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ACHIEVEMENT GAP ESTIMATES AND DEVIATIONS FROM CARDINAL
COMPARABILITY

ERIC R. NIELSEN

THE FEDERAL RESERVE BOARD

Abstract. This paper assesses the sensitivity of standard empirical methods for measuring group

differences in achievement to violations in the cardinal comparability of achievement test scores. The

paper defines a distance measure over possible weighting functions (scalings) of test scores. It then

constructs worst-case bounds for the bias in the estimated achievement gap (or achievement gap

change) that could result from using the observed rather than the true test scale, given that the true

and observed scales are no more than a fixed distance from each other. The worst-case weighting

functions have simple, closed-form expressions consisting of achievement thresholds, flat regions in

which test scores are uninformative, and regions in which the observed test scores are actually cardi-

nally comparable. The paper next estimates these worst-case weighting functions for black/white and

high-/low-income achievement gaps and gap changes using data from several commonly employed

surveys. The results of this empirical exercise suggest that cross-sectional achievement gap estimates

tend to be quite robust to scale misspecification. In contrast, achievement gap change estimates

seem to be quite sensitive to the choice of test scale. Standard empirical methods may not robustly

identify the sign of the trend in achievement inequality between students from different racial groups

and income classes. Furthermore, ordinal methods may be more powerful and will continue to have

the correct size when the test scale has been misspecified. JEL Codes: C18, I24, I26

1. Introduction

Researchers frequently use test-score data to assess group differences in achievement. The vast

majority of such investigations assume that some known normalization of the test scores renders them

cardinally comparable in the sense that a given score change has the same meaning throughout the

range of possible scores. Furthermore, such investigations typically assume that a given test score has

the same meaning across different surveys, ages, or time periods.1 However, neither of these assump-

tions are well motivated by either economic or psychometric theory. If either fails, standard estimates

Date: May, 12 2015.
Preliminary and incomplete. Please do not cite or circulate without explicit permission of the author. Rick Ogden
provided excellent research assistance for this project. The views and opinions expressed in this paper are solely those
of the author and do not reflect those of the Board of Governors or the Federal Reserve System. Contact: Division
of Research and Statistics, Board of Governors of the Federal Reserve System, Mail Stop 97, 20th and C Street NW,
Washington, D.C. 20551. eric.r.nielsen@frb.gov. (202) 872-7591.
1Consider SAT scores. If SAT scores are comparable over time, a student who earns a 600 on the math section in 1980
should have the same achievement as a student who earns a 600 in 2010. If the SAT has a cardinal (interval) scale, then
a student who improves her math score from 400 to 500 has improved by the same amount as a student whose score
increased from 600 to 700.
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of achievement gaps and achievement-gap changes (“gaps/changes”) can be severely biased. Such esti-

mates are no longer even guaranteed to correctly identify the sign of the achievement gap/change.

In a parallel working paper, I show how to make achievement comparisons between different groups

of students using only the ordinal content of achievement test scores.2 I also show that focusing on the

cardinal/ordinal distinction is not mere methodological pedantry; standard, cardinal methods suggest

that the gap in achievement between youth from high- and low-income households widened in recent

decades, whereas more-robust ordinal methods strongly suggest the opposite.

The necessary conditions for ordinal statistics to unambiguously identify achievement gaps/changes

are quite demanding. Two main conditions are needed, and each is likely to fail in many applied

settings. First, it must be possible to place test scores on a common scale so that a given score

corresponds to the same underlying level of achievement regardless of the year, cohort, or age group

from which the score was drawn.3 Second, various first-order stochastic dominance conditions must

hold between the relevant test-score distributions.4 Although these dominance conditions are satisfied

in some instances, for many economically interesting achievement comparisons they are not met.

The stringency of the necessary conditions for valid ordinal inference means that many achievement

comparisons are inherently ambiguous or scale dependent. There are many situations in which we

really cannot determine with certainty how achievement inequality has changed, as much as we would

like to and as strongly as standard cardinal methods suggest that we can. Should researchers then

simply plead ignorance when ordinal estimates are inconclusive or infeasible?

There are good reasons to resist such radical agnosticism. Test scales may not be perfectly cardinal,

yet they may still carry useful cardinal information. For example, suppose we are comparing three

students with SAT scores of 1000, 1500, and 1510. It seems plausible that the student with a 1500 truly

is closer to the 1510 student than she is to the 1000 student, even if the ratio of the score differences

in the true cardinal scale is not exactly 1/50. Eschewing cardinality completely may be throwing

away a lot of useful information and, thus, unnecessarily decreasing one’s power to detect achievement

differences. If some known test rescaling is truly cardinal, then cardinal statistical tests applied to this

scale will have greater power to detect achievement-gap changes than will entirely ordinal approaches.5

2For an up-to-date draft of that paper, please see the top link at https://sites.google.com/site/ericnielsenecon/
research.
3Many standardized tests are renormed every year, violating the common-scale assumption. If there are common items
across the different tests, or if a group of students were randomly assigned to each different test, then it is possible
to construct a common scale against which all test-takers from any survey can be coherently ordered. I abstract from
this problem in the theory sections of this paper, and I take great care put scores in “equivalent units” in the empirical
sections.
4In particular, the “high” group score distribution must first-order dominate the “low” group score distribution within
a given year/cohort for the sign of the cross-sectional achievement gap to be unambiguous. For an achievement gap
change to be unambiguous, the high group in the earlier period must first-order dominate the high group in the later
period, and the low group in the later period must first-order dominate the low group in the earlier period.
5Section 7 demonstrates the greater power of cardinal methods in the case that test scores are normally distributed and
cardinally comparable.
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Intuitively, if a known test scale is “almost” cardinal, cardinal statistical tests may correctly identify

the sign of an achievement gap/change in the limit and have greater power than ordinal tests in finite

samples. Of course, if the test scale used is actually very far from the true cardinal scale, then cardinal

methods may misidentify achievement gaps/changes in the limit and will definitely have incorrect

size and power in finite samples. In order to operationalize this intuitive tradeoff, it is necessary to

formalize what it means for the true test scale and the observed scale to be “far” from each other.

Therefore, I study the failure of cardinal comparability as a specification problem. In particular,

I introduce a distance measure that allows me to quantify how far apart two candidate test scales

are. Next, I suppose that nothing is known about the true cardinal test scale other than that it lies

within a fixed distance of the observed test scale. I then search for the unobserved true scale satisfying

the hypothesized distance restriction that maximizes the difference between the observed and true

achievement gaps/changes. By studying the worst-case bias as a function of the hypothesized distance

between the true and observed scales, I can test the sensitivity of standard methods to deviations in

the cardinality of test scales.

On the theoretical side, I derive closed-form expressions for the test scales that maximize positive and

negative bias relative to the observed scale. Under fairly general conditions, these weighting functions

depend only on the distance restriction imposed and a finite vector of statistics of the component

test-score distributions being compared. The worst-case weighting functions are all piecewise-linear,

with both flat regions (where changes in observed test scores are uninformative) and cardinal regions

(where changes in observed test scores map linearly to changes in true achievement). Furthermore,

the weighting functions often contain discontinuous jumps, or achievement thresholds, where a small

change in the observed test score corresponds to a large change in true achievement.

I estimate the worst-case weighting functions and resulting scale sensitivities for black/white and

high/low-income achievement gaps/changes in the National Longitudinal Surveys of Youth (NLSY)

and the National Education Longitudinal Surveys (NELS/ELS). The cross-sectional achievement gap

estimates are quite robust in these data. It is often not possible to find a rescaling of the test scores

that flips the sign of a given estimate regardless of the distance restriction. In other cases, the minimum

distance needed for the observed scale to misidentify the sign of the true gap is very large. For instance,

to flip the sign of the black/white reading achievement gap in the NLSY97, the weights placed on test

scores by the true and observed scales must differ by at least 2 standard-deviation units somewhere

on the range of observed scores. In contrast, gap-change estimates are typically much more sensitive

to scale deviations. It is possible to pick a large enough distance restriction to flip the sign of the

estimate for every gap-change estimate I examine. Furthermore, the size of the deviations required to
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affect a sign flip are often quite small. For example, if the true and observed scale are allowed to differ

by only 0.15 standard deviations somewhere on their support, the sign of the income-achievement gap

change for reading may be misidentified in the NELS/ELS.

My empirical results cast serious doubt on research that uses cardinal methods to measure time

trends in achievement inequality. Some of the most well-studied achievement-gap changes estimated

using very widely used data sources are not robust to minor changes in the test scale used. Since

there are not good reasons to prefer the observed test scale to any other, estimates of changes in

achievement inequality over time using this scale are not credible. Researchers assessing changes in

achievement inequality over time should be much more circumspect in their deployment of standard

cardinal methods or should eschew scale-dependent techniques entirely.

This paper is not entirely negative, because I also develop a set of tools that allow a researcher

to assess whether a particular achievement gap/change estimate is sensitive to the choice of scale.

These tools are straightforward to apply and do not require more data than would be used in stan-

dard empirical gap/change calculations. With my toolkit in hand, empirical researchers can proceed

using standard methods and simply check whether or not their particular conclusions are overly scale

dependent before switching to less familiar and less powerful ordinal approaches.

The rest of the paper is as follows. Section 2 reviews the relevant literature on achievement gaps,

test score cardinality, and the relationship between stochastic dominance and social welfare. Section

3 lays out the notation, defines the necessary mathematical objects, and justifies the normalizations

and simplifications I employ. Section 4 derives the worst-case weighting functions for a general class

of achievement gap/change estimates. Section 5 outlines a number of empirically relevant extensions

to the theoretical bounding analysis. Section 6 assesses the sensitivity of a number of achievement

gap/change estimates to cardinal deviations using the NLSY and NELS/ELS data. Section 7 investi-

gates the power and size of cardinal and ordinal tests in the presence of cardinal deviations. Section

8 concludes. Appendices A through D contain figures, point estimates, additional background, and

technical discussion.

2. Literature Review

The economics literature using cardinal methods to assess group differences in achievement is vast.

Fryer and Levitt[7, 8], Clotfelter, Ladd, and Vigdor[5], Duncan and Magnuson[6], Hanushek and

Rivkin[9], and Neal[15], among many others, use cardinal methods to assess changes in black/white

achievement inequality in the United States.6 Reardon[19] employs cardinal methods to argue that

6Neal[15] does recognize, however, that “[a]chievement has not natural units,” and so he also analyzes the percentile
rankings of black versus white test takers.
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the gap in achievement between high- and low-income youth has widened tremendously over the

past several decades. Finally, research assessing school and teacher performance through value-added

models (VAMs) and papers estimating the productivity of various inputs such as class size and teacher

quality on student achievement also typically assume that test scores are cardinal measures.7

This paper is not the first in either economics or psychometrics to argue that normalized test

scores are not cardinally comparable. In psychometrics, Stevens[23] and Lord[14] argue that most

psychometric test scores are inherently ordinal. In economics, Lang[13], Bond and Lang[3], Cascio and

Staiger[4], Reardon[18], and Nielsen[16] all discuss the sensitivity of standard achievement gap/change

estimates to order-preserving transformations of the test scores. The analysis in Bond and Lang[3] is

particularly relevant to this paper. These authors search over a fairly general class of order-preserving

transformations of test scores in order to find rescalings that maximize and minimize the apparent

change in black/white achievement inequality through the first several years of school. Their worst-case

transformations typically consist of a set of achievement thresholds with mostly flat regions between

sharp jumps. Interestingly, their functional forms are quite similar to those I derive theoretically in

this paper.

Ultimately, economists and policymakers are not interested in the test scores themselves, but rather

in the (social) value of the achievement represented by the test scores. This formulation yields an

isomorphism between measuring achievement gaps and using social welfare functions to rank income

distributions. In this context, it has been shown that first-order stochastic dominance (FOSD) is both

necessary and sufficient for all increasing social welfare functions to agree on the ranking of two distri-

butions, while all concave functions will rank second-order dominance (SOSD) identically.8 Aaberge,

Havnes, and Mogstad[20] note that first- and second-order dominance often fail to hold in empirical

applications ranking income distributions. In response, they derive economically interpretable pref-

erence functions that allow unambiguous ranking of distribution functions under dominance of any

order. In principle, their approach could also be used to rank test-score distributions when FOSD

and SOSD fail to hold. However, doing so would require imposing conditions on the social welfare

function that are less plausible when applied to test scores than when applied to income. For example,

concavity can be justified for income by appealing to diminishing marginal utility. However, concavity

may not make sense for test scores because the relationship between scores and life outcomes may be

7For example, Krueger[12] and Hoxby[11] both use test scores cardinally to estimate the effect of class size on student
achievement gains. Value-added methodologies such as those expounded in Raudenbush [17] and elsewhere also suppose
that (normalized) test scores are cardinally comparable.
8Indeed, in this paper, and in Nielsen[16], I make extensive use of this fact.
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quite convex. Even if the social welfare function is concave in life outcomes, it may not be concave in

test scores.9

3. Formal Setting and Assumptions

Suppose a population of students have test scores s distributed according to cumulative density

function (cdf) F . Furthermore, suppose that the test scores are weakly ordinally perfect in the sense

that true achievement a corresponding to test score s is given by a = ψ(s) for some weakly increasing

function ψ.10

Let W0(s) be the true value of the underlying achievement corresponding to test score s. W0 is the

composition of several conceptually distinct maps: the map ψ from test scores to true achievement,

the map from true achievement to economically relevant life outcomes, and the map from life outcomes

to social welfare. Even assuming that the choice of the social welfare function is uncontroversial, the

first of these maps is not knowable and the second is very difficult to estimate even with the richest

data.11 Therefore, I will assume throughout this paper that W0 is inaccessible to the researcher.

The only a priori restriction I place on W0 is that it is weakly increasing in s: s > s′ =⇒ W0(s) ≥

W0(s′) ∧W (s) > W0(s′) =⇒ s > s′. Weak monotonicity is a natural assumption in this setting

because higher test scores must correspond to weakly higher underlying achievement, and positive life

outcomes should be causally linked to higher true achievement. I do not assumeW0 is strictly monotone

because I want to allow for the possibility that changes in test scores in some regions do not change

overall welfare, either because the scores themselves are uninformative or because higher achievement

does not always lead to better outcomes.12 Even if the map from test scores to achievement is strictly

monotone, either or both of the maps from achievement to life outcomes or from life outcomes to

social welfare may have flat regions. Weak monotonicity does not rule out the possibility that W0 is

constant everywhere. The worst-case W0’s may actually be constant when the true scale is allowed to

be very different than the observed scale. However, the worst-case weighting functions will be strictly

increasing somewhere in all but the most extreme cases. Unless I explicitly specify otherwise, I will

9For example, consider a test of athletic ability and suppose that we are interested in lifetime labor income. Reasonable
preferences on income will likely be concave, but the relationship between athletic ability and income may be highly
convex. The increase in income associated with moving from the level of a good college basketball player to the level of
Lebron James is so large that it may well swamp any concavity in social welfare.
10This implies that for two students i and j with test scores si > sj , ai should be weakly greater than aj . Whether
ψ is weakly or strictly monotone is not crucial for the analysis. The advantage of maintaining only weak monotonicity
conceptually is that is allows test scores to be uninformative in some regions. Of course, ψ must be strictly increasing
somewhere if the test is to be useful at all in differentiating students by achievement.
11Life outcomes such as longevity, health, total labor market earnings, marriage quality, and so forth are only fully
revealed decades after most achievement test scores are recorded. Estimating even some of these outcomes with the
best longitudinal data available is a major econometric challenge. Nielsen[16] carries out such a calculation for lifetime
earnings in the National Longitudinal Surveys of Youth (NLSY) data.
12Real-world institutions often treat test scores in some ranges as being uninformative; for example, graduate economics
departments typically do not distinguish between GRE scores of 165-170.



ACHIEVEMENT GAP ESTIMATES AND DEVIATIONS FROM CARDINAL COMPARABILITY 7

treat generic weighting functions W0 in the remaining analysis as having at least two values s > s̃ such

that W0(s) > W0(s̃).

Consider the problem of comparing two distinct test-score distributions F and F̃ given that W0 is

unknown. The total value of F depends on W0 because V (W0, F ) = EF [W0(s)] =
´
W0(s)dF (s). It is

straightforward to show that V (W0, F ) > V (W0, F̃ ) for any increasing W0 if and only if F � F̃ , where

� denotes strict FOSD. If FOSD does not hold, there is no unambiguous way to compare F and F̃

in that there must exist distinct increasing functions W and W̃ such that V (W,F ) > V (W, F̃ ) and

V (W̃ , F ) < V (W̃ , F̃ ). In contrast, misspecifications of W0 cannot lead to erroneous conclusions about

the sign of the achievement gap if F � F̃ , although the relative magnitudes of the true and observed

achievement gaps may be very different.

I make a number of technical assumptions and normalizations on the observed test-score distribu-

tions and true score weighting functions in order to simplify the analysis. These assumptions do not

rule out any economically interesting cases and permit much cleaner statements and proofs of the main

results.

Definition 3.1. F satisfies (A1) iff:

(i) F ∈ F , the space of univariate distributions with continuous densities everywhere on their

support. Let f denote the probability density function (pdf) associated with F .

(ii) Support(F ) = [0, 1]

Part (i) of definition 3.1 is convenient for technical reasons and does not rule out any interesting

cases. Part (ii) is just a normalization and is also without loss of generality since test scores can

always be rescaled to fit in [0,1] from whatever cardinal scale the researcher prefers.13

Definition 3.2. W0 satisfies (A2) iff:

(i) W0 is integrable with respect to any F satisfying (A1).

(ii) W0 is weakly increasing and right-continuous in s.

(iii) W0(s) ∈ [0, 1] for all s ∈ Support(F ).

Part (i) of definition 3.2 is again a technical assumption and does not rule out any interesting cases.

The weakly increasing assumption in part (ii) was justified previously. The requirement in part (ii) that

W0 be right-continuous is another technical assumption that guarantees uniqueness of the “worst-case”

weighting functions.14 Part (iii) normalizes W0(s) to have the same support as F . This normalization

13Suppose a researcher has a candidate cardinal scale such that test scores follow distribution F̃ with Support(F̃ ) =
(a, b) ⊂ (−∞,∞). Since a and b are finite, an affine transformation will rescale test scores to [0,1] while preserving the
purported cardinality of F̃ .
14In particular, the worst-case W0’s will often have discontinuous jumps somewhere on Support(F ). Right-continuity
rules out the existence of multiple W0’s that differ only on these (measure-0) jumps.
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is without loss of generality because welfare is bounded and can only ever be identified up to affine

transformations. One can change the units of W0 without changing anything in the analysis except

for the units of the distance restriction and the resulting biases. For the remainder of the paper, I will

always suppose that (A1) and (A2) hold. Figure A.1 plots several possible W0’s when (A2) hold. The

figure shows that W0 may be convex, concave, linear, and discontinuous while still satisfying (A2).

In order to assess how sensitive a given achievement gap/change estimation method is to scale

deviations, I must first define a distance measure on test scales. Given two candidate test scales, I

define the distance between them using the sup norm.

Definition 3.3. Let W and W̃ be test-score weighting functions on [0,1]. The distance between W

and W̃ is

D(W, W̃ ) ≡ sup
x∈[0,1]

|W (x)− W̃ (x)|.

D is a well-defined distance function on the space of weakly increasing functions with domain and

range on [0,1].15

The sup norm gives an intuitive way to assess the degree to which two weighting functions disagree.

If D(W, W̃ ) is very small, then at no point on [0,1] do W and W̃ differ by very much. In contrast,

when k is large, there are regions where W and W̃ weigh scores very differently. Definition 3.3 is not

the only way to formalize the notion of distance between weighting functions. For instance, one could

define D(W, W̃ ) ≡
´
|W (x)−W̃ (x)|dx. This alternative definition has the advantage that it will assess

a large difference in the case that W and W̃ differ by a small amount everywhere on [0,1]. Using D

instead of D substantially complicates the analysis and is therefore left for future work.

Consider measuring the cross-sectional achievement gap between two groups of students as well as

the changes in the cross-sectional gap over time. Labeling the groups A and B, and letting FA,t and

FB,t denote their test-score distributions in period t, the true cross-sectional achievement gap between

them is given by

∆V (W0, A,B, t) ≡ V (W0, FA,t)− V (W0, FB,t) =

ˆ 1

0

W0(s) [fA,t(s)− fB,t(s)]︸ ︷︷ ︸
≡∆ft(s)

ds.

Similarly, the change in the achievement gap between A and B from t to t+ 1 is16

∆V (W0, A,B, t, t+ 1) ≡ ∆V (W0, A,B, t+ 1)−∆V (W0, A,B, t) =

ˆ 1

0

W0(s) [∆ft+1(s)−∆ft(s)]︸ ︷︷ ︸
≡∆ft+1,t(s)

ds.

15That is, for any three such functions W , X, and Y , the following hold: (i) D(W,X) ≥ 0, (ii) D(W,X) = 0 if and only
W = X, (iii) D(W,X) = D(X,W ), and (iv) D(X,W ) ≤ D(X,Y ) +D(Y,W ).
16I will exclusively use language describing gap-changes over time. However, nothing in the analysis requires time to
be the dimension along which change is assessed. For instance, one could replace “t” with “urban school district” and
“t+ 1” with “suburban school district,” and nothing about the mathematics would change.
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In both of these cases, the object of interest consists of an integral from 0 to 1 of the function

W0(s)∆f(s), where ∆f is some sum and difference of density functions across the relevant comparison

groups. The specific context matters only insofar as it alters ∆f . Therefore, I will characterize bias in

expressions with the general form ∆V (W0,∆f) ≡
´ 1

0
W0(s)∆f(s)ds, while leaving the exact objective

(cross-sectional or gap-change) in the background.

Suppose that I(s) = s were used to calculate ∆V instead of W0. The “pseudo-gap” as measured

by I would then be given by ∆V (I,∆f) =
´ 1

0
s∆f(s)ds. The bias created from using I instead of W0

is just the difference between these two ∆V ’s. There are two cases to consider, one that maximizes

the degree to which the true difference is larger than the observed difference, one that maximizes the

degree to which the observed difference overestimates the true difference.

(3.1) B+(I,W0,∆f) =

ˆ 1

0

(W0(s)− s) ∆f(s)ds

(3.2) B−(I,W0,∆f) =

ˆ 1

0

(s−W0(s)) ∆f(s)ds.

B+ will be large when ∆f(s) and (W0(s) − s) have the same sign, while B− will be large when the

opposite is true. The worst-case W0’s for a given k are just those weighting functions that maximize

B+ and B− among all weighting functions that satisfy D(W, I) ≤ k.

Definition 3.4. Suppose that all component test-score distributions in ∆f satisfy (A1). The worst-

case W0’s satisfying (A2) and D(I,W ) ≤ k for a given distance restriction k are then given by

W+
0 (s|k,∆f) ≡ max

W∈W∧D(I,W )≤k
B+(I,W,∆f)

W−0 (s|k,∆f) ≡ max
W∈W∧D(I,W )≤k

B−(I,W,∆f).

Let B̄+(k) = B+(I,W+
0 (s|k,∆f),∆f) and B̄−(k) = B−(I,W−0 (s|k,∆f),∆f) denote the values of the

worst-case biases given k.

Although W+
0 and W−0 both depend on k and ∆f , I will often omit these arguments for brevity

when their specific identities are not important. Unless certain symmetry conditions hold on ∆f ,

B̄+(k) 6= B̄−(k) for most values of k greater than 0. Both biases are 0 when k = 1 as W+
0 and W−0 are

both identically equal to I in this case.

It is very difficult to make precise statements about these biases if the various component test-score

densities are unrestricted other than the conditions imposed by (A1). Therefore, I will consider a

number of special cases that encompass many realistic empirical scenarios.
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Definition 3.5. ∆f satisfies (A3) iff all of its component densities satisfy (A1) and if ∃!s∗ ∈ (0, 1)

such that ∆f(s∗) = 0, ∆f(s) < 0,∀s ∈ (0, s∗) and ∆f(s) > 0,∀s ∈ (s∗, 1).

Assumption (A3) simply says that ∆f is negative for low values of s, positive for high values of s, and

crosses 0 only once on (0,1).17 Although (A3) might appear to be very narrow, it actually encompasses

a number of empirically relevant cases. For example, suppose that ∆f(s) = fA,t(s) − fB,t(s). If the

raw distributions of A and B are both unimodal and symmetric with similar variances and if A has

a higher mean than B, ∆f will typically satisfy (A3) after normalization.18 Whenever FA � FB ,

∆f(s) = fA(s) − fB(s) will satisfy (A3). The reverse implication ((A3) implying FOSD) does not

generally hold. However, even in cases where FOSD does not hold, achievement gap/change estimates

will typically be quite robust under (A3).

In many interesting applications, particularly those involving achievement gap changes, ∆f will

cross 0 more than once on (0,1). Definition 3.6 extends definition 3.5 to allow for multiple crossing

points.

Definition 3.6. ∆f satisfies (A4) for N > 1 if the following conditions hold:

(i) ∃s∗0s∗1, s∗2, . . . , s∗N , s∗N+1 with s∗0 ≡ 0 < s∗1 < s∗2 < . . . < 1 ≡ s∗N+1 such that ∆f(s∗i ) = 0∀i ∈

{1, . . . , N}.

(ii) ∆f(s) 6= 0 if s /∈ {0, s∗1, . . . , s∗N , 1}

(iii) ∆f(s) < 0 for s ∈ (0, s∗1) and sign[∆f(s)] = −sign[∆f(s′)] whenever s ∈ (s∗i−1, s
∗
i ) and s′ ∈

(s∗i , s
∗
i+1), i ∈ {1, . . . , N}.

Definition 3.6 says that there are exactly N points on (0,1) where ∆f is 0 and that at none of these

points does d∆f(s)
ds equal 0. Furthermore, the definition says that ∆f is negative before the first interior

0. This means that if N is odd ∆f(s) > 0 on (s∗N , 1) and if N is even ∆f(s) on this interval. Figure

A.2 in appendix A displays three ∆f ’s consistent with (A3) and two ∆f ’s consistent with (A4) for

N = 6.

Assumption (A4) defines a very general class of functions. Since (iii) can always be guaranteed

by choosing which distributions to label A and which to label B, the only substantive restrictions

placed on ∆f by (A4) are that it only cross 0 a finite number of times, that there be no intervals with

positive measure on which ∆f is 0, and that there be no 0’s at which d∆f(s)
ds = 0. (A4) will be satisfied

generically for virtually any finite sum or difference of densities from any commonly used distributional

families.

17Note that (A3) only restricts ∆f(0) to be less than or equal to 0 and ∆f(1) to be greater than or equal to 0.
18For example, if A ∼ N(µA, σ) and B ∼ N(µB , σ), then ∆f will satisfy (A3) once the normalizations in (A1) are
imposed.
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4. Bounding Analysis Using the Sup Norm

I now construct closed-form expressions for W+
0 and W−0 when either (A3) or (A4) hold. Under

either assumption, both W+
0 and W−0 have relatively simple functional forms for any value of k ∈

[0, 1]. Unfortunately, it will not generally be possible to find closed-form expressions for B̄+(k) and

B̄−(k). Nonetheless, knowing the forms of W+
0 and W−0 makes simulating B̄+(k) and B̄−(k) relatively

straightforward.

The worst-case weighting functions under (A4) nest the worst-case functions under (A3) as special

cases. Even though doing so is technically redundant, I will present results for (A3) separately, as W+
0

and W−0 have particularly simple and intuitive interpretations in this case. Therefore, suppose first

that (A1)-(A3) hold. Theorem 4.1 below shows that the only influence that ∆f has on W+
0 is through

s∗.

Theorem 4.1. If (A1)-(A3) hold, then W+
0 has the form19

(4.1) W+
0 (s|k, s∗) =


max {s− k, 0} , s ∈ [0, s∗)

min{s+ k, 1}, s ∈ [s∗, 1]

Proof. In appendix C. �

Although equation (4.1) in theorem 4.1 is somewhat difficult to parse, the intuition behind it is

quite simple. Recall that B+ is large when [W0(s) − s] and ∆f(s) have the same sign, implying that

B+ will be maximized when W+
0 is as far as possible below the 45 degree line for values of s less

than s∗ and as far above the diagonal when s is greater than s∗. The farthest possible value below s

consistent with D(I,W+
0 ) is just max{s − k, 0}, which is the expression for W+

0 on [0, s∗), while the

farthest possible value above is min{s+ k, 1}, which defines W+
0 on [s∗, 1].

In order to understand the definition in more detail, it is helpful to examine a number of cases

determined by the size of s∗, 1− s∗, and k. If k ≥ max{s∗, 1− s∗}, then the D ≤ k restriction never

binds and W+
0 is just a step function given by W+

0 (s|k, s∗) = 0 for s < s∗ and W+
0 (s|k, s∗) = 1 for

s ≥ s∗. If k < min{s∗, 1− s∗}, the constraint that D ≤ k binds on both intervals [0, s∗) and [s∗, 1] and

19I will always include s∗ in the “upper half” of W+
0 or W−0 . This choice is arbitrary and unimportant since s∗ has 0

measure. Therefore, W+
0 (s|k, s∗) below could just as well be defined by max{s − k, 0} on [0, s∗] and min{s + k, 1} on

(s∗, 1].
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W+
0 (s|k, s∗) becomes

(4.2) W+
0 (s|k, s∗) =



0, s ≤ k

s− k, s ∈ (k, s∗)

s+ k, s ∈ [s∗, 1− k)

1, s ≥ 1− k.

Figure A.3 in appendix A plots equation (4.2).

The analysis for W−0 under (A1)-(A3) is substantially more involved than the analysis for W+
0 .

The complicating factor is that B− is large when [W0(s)− s] and ∆f have opposite signs. Therefore,

W−0 would “like” to be as far above the diagonal as possible on [0, s∗) and as far below the diagonal

as possible on [s∗, 1]. But W−0 must be weakly increasing, so the larger W−0 (s∗) is, the smaller the

possible bias contribution is on [s∗, 1]. W−0 must trade off these competing forces.

Equation (4.3) in theorem 4.2 defines W−0 (s|k, s∗, sc), where sc = W−0 (s∗). The functional form of

W−0 is straightforward to derive given sc. W−0 must be as far above the diagonal as possible on [0, s∗)

consistent with both D(I,W−0 ) ≤ k and W−0 (s∗) = sc, while W−0 must be as far below the diagonal

for values of s greater than s∗. Each potential choice of sc trades off bias creation below and above

s∗differently. Since (A1)-(A3) imply that this tradeoff is a smooth function of sc, there must be some

value of sc that maximizes B̄−(k).

Theorem 4.2. If (A1)-(A3) hold, then for some sc ∈ [max{s∗ − k, 0},min{s∗ + k, 1}], W−0 is given

by

(4.3) W−0 (s|k, s∗, sc) =


min{s+ k, sc}, s ∈ [0, s∗)

max{s− k, sc}, s ∈ [s∗, 1].

Proof. In appendix C. �

Equation (4.3) is much easier to understand if one considers several special cases. For example, if

sc > k and sc + k < 1, then equation (4.3) simplifies to

(4.4) W−0 (s|k, s∗, sc) =


s+ k, s < sc − k

sc, s ∈ [sc − k, sc + k]

s− k, s > sc − k.

Equation (4.3) in some sense defines the most general form for W−0 . The other possible forms are just

those cases where one or both of the kink points sc − k and sc + k lie on the boundary of [0, 1]. If k is
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large enough that sc−k ≤ 0 and sc+k ≥ 1, W−0 will simply equal sc everywhere on [0,1]. If sc−k > 0

and sc + k ≥ 1 then only the lower kink point is still present. Similarly, if sc − k ≤ 0 and sc + k < 1

then only the upper kink point is present. 20 Figure A.4 illustrates these possibilities by plotting W−0

for three different values of sc.

Theorem 4.2 does not fully characterize W−0 because it does not pin down sc. Since sc and k

jointly determine the form of W−0 , for a fixed k, sc indexes all of the possible W−0 ’s consistent with

D(I,W−1
0 ) ≤ k. Each candidate sc yields a different negative bias B−(I,W−0 (�|sc),∆f) and the worst-

case sc is just the point in [s∗−k, s∗+k] that maximizes B−(I,W−0 (�|sc),∆f). In practice, calculating

this worst-case sc explicitly is very tedious and fairly uninformative.21 One exception is the special

case that ∆f(s∗ − x) = −∆f(s∗ + x), ∀x ∈ [0, 1
2 ], which implies s∗ = sc = 0.5.

Both W+
0 and W−0 under (A1)-(A3) have an intuitive interpretation for cross-sectional achievement

gaps in the case that FA � FB . FOSD implies that any weighting scheme will measure a positive

achievement gap between A and B. The maximum possible true gap between A and B is given by

∆V (W+
0 (s|k, s∗),∆f). Since the scores in A dominate those in B, type-B students have relatively

greater density among scores close to 0 and relatively lower density among scores close to 1. The true

gap between A and B will therefore be very large if scores close to 0 are given as little weight as possible

while scores close to 1 are weighted quite heavily, which is exactly what W+
0 does. Symmetrically,

the true gap between them will be as small as possible exactly when low scores are given as much as

weight as possible relative to high scores, which, again, is just what W−0 does.

The robustness of a cardinal gap/change estimate to deviations in scale depends on how rapidly

the associated biases B+ and B− increase as k increases. If these biases increase rapidly with k, then

relatively small cardinal deviations may be sufficient to flip the sign of the gap/change estimate. In

contrast, if they increase slowly, such a reversal will only be possible when k is quite large. In general,

it is not possible to derive closed-form expressions for ∂B+

∂k and ∂B−

∂k because these derivatives depend

on the particular shape of ∆f . Nonetheless, in the case that ∆f satisfies (A3) or (A4), it is still

possible to gain some intuition about what features of ∆f determine how quickly the positive-side and

negative-side biases increase with increases in k. I only present the analysis for the case that (A3)

holds; the results are qualitatively similar under (A4), but the exposition is messier and less intuitive.

20That is, if sc − k > 0 and sc + k ≥ 1, equation (4.3) becomes

W−0 (s) =

{
s+ k, s < sc − k
sc, s ∈ [sc − k, 1].

If sc − k ≤ 0 and sc + k < 1 then equation (4.3) simplifies to

W−0 (s) =

{
sc, s < sc + k

s− k, s ≥ sc + k.

21The difficulty is that the integral
´ 1
0 (s−W−0 (s|sc))∆f(s)ds does not generally have a closed form.
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Theorem 4.3. If (A1)-(A3) hold and k is sufficiently close to 0, then

∂B+

∂k
=

ˆ 1−k

k

|∆f(s)|ds

∂B−
∂k

=

ˆ 1

sc+k

∆f(s)ds−
ˆ sc−k

0

∆f(s)ds−
ˆ sc+k

sc−k

∂sc
∂k

∆f(s)ds.

Proof. In appendix C. �

Theorem 4.3 characterizes ∂B+

∂k and ∂B−

∂k for values of k relatively close to 0.22 The theorem shows

that ∂B+

∂k depends on the total area (both positive and negative) between ∆f and 0 on the interval

[k, 1 − k]. If ∆f is mostly far away from 0 in this central subinterval, then the positive-side bias will

increase rapidly with k. Furthermore, ∂B+

∂k is monotonically decreasing in k and approaches 0 from

above as k approaches 0.5. The expression for ∂B−

∂k is somewhat harder to interpret because sc is

only defined implicitly. For simplicity, suppose that ∆f satisfies ∆f(0.5 − x) = −∆f(0.5 + x) for

any x ∈ [0, 0.5]. It is immediate in this case that sc is equal to 0.5 for all values of k, which implies

that ∂B−

∂k depends only on the total area (positive and negative) between 0 and ∆f on the intervals

[0, 0.5 − k] and [0.5 + k, 1], that is, on the “tails” of [0,1]. B− will generally be more sensitive than

B+ to the properties of ∆f near the endpoints of [0,1], even in the typical case that sc depends on

k. Theorem 4.3 also implies that ∂B+

∂k |k=0 = ∂B−

∂k |k=0 =
´ 1

0
|∆f(s)|ds. For values of k very close to

0, B+ and B− increase mostly symmetrically with k. As k grows larger, the relevant subintervals of

[0,1] contributing the most to B+ and B− become more and more different. This divergence, coupled

with possible increases or decreases in sc as k grows larger, means that ∂B+

∂k and ∂B−

∂k will not be equal

generically when k is greater than 0.

I now relax the single-crossing assumption in favor of (A4). This modification substantially compli-

cates the determination ofW+
0 andW−0 , although closed-form expressions still exist for both weighting

functions. The source of the complication is the tension between setting W+
0 or W−0 as low (or high)

as possible over an interval [s∗i , s
∗
i+1] and setting it as high (or low) as possible on [s∗i+1, s

∗
i+2]. For

example, consider W+
0 in the case that N = 2. Since B+ is large when [W−0 (s)− s] and ∆f have the

same sign, the contribution to B+ on [s∗1, s
∗
2] is maximized when W+

0 (s) = s+ k. However, W+
0 (s) on

[s∗2, 1] cannot be less thanW+
0 (s∗2), but bias in this region is made larger the more negativeW−1

0 (s)−s

is. Therefore, maximizing the bias contribution on [s∗1, s
∗
2] minimizes the bias contribution on [s∗2, 1].

FindingW+
0 requires that one balance these competing forces, and the strength of these forces depends

solely on the particular shape of ∆f and the value of k.

22In particular, the expression for ∂B+

∂k
assumes that k < min{s∗, 1− s∗}, while the expression for ∂B−

∂k
supposes that

k < min{sc, 1− sc}.
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The functional forms of W+
0 and W−0 under assumption (A4) also depend on whether N is even or

odd. As with W−0 under (A3), both W+
0 and W−0 are parametrized by the values they take at the

various ∆f crossing points. In particular, W+
0 is parametrized by its values at even-indexed crossing

points (s∗i such that i is even), while W−0 depends on its values at the odd-indexed crossing points.

Theorem 4.4 below characterizes W+
0 when (A4) holds for an arbitrary N . Figure A.5 plots potential

worst-case weighting functions W+
0 for the cases N = 2 and N = 3.

Theorem 4.4. If (A1), (A2), and (A4) hold for N ∈ N, then there exists a non-decreasing sequence

0 ≤ s+
2 ≤ s+

4 ≤ . . . ≤ 1 such that W+
0 (s∗i |k) = s+

i ∈ [max{s∗i − k, 0},min{s∗i + k, 1}] for even i ≤ N

and such that

(4.5) W+
0 (s|k) =



max{s− k, 0}, s ≤ s∗1

min{s+ k, s+
2 }, s ∈ (s∗1, s

∗
2]

max{s− k, s+
2 }, s ∈ (s∗2, s

∗
3]

...

max{s− k, s+
N}, s ∈ (s∗N , 1] ∧N even

min{s+ k, 1}, s ∈ (s∗N , 1] ∧N odd.

Proof. In appendix C. �

Theorem 4.5 below characterizesW−0 for an arbitrary N . Figure A.6 plots potential worst-case weight-

ing functions W−0 when N = 2 or N = 3.

Theorem 4.5. If (A1), (A2), and (A4) hold for N ∈ N, then there exists a non-decreasing sequence

0 ≤ s−1 ≤ s−3 ≤ · · · ≤ 1 such that W−0 (s∗i |k) = s−i ∈ [max{s∗i − k, 0},min{s∗i + k, 1}] for odd i ≤ N and

such that

(4.6) W−0 (s|k) =



min{s+ k, s−1 }, s ≤ s∗1

max{s− k, s−1 }, s ∈ (s∗1, s
∗
2]

min{s+ k, s−3 }, s ∈ (s∗2, s
∗
3]

...

min{s+ k, 1}, s ∈ (s∗N , 1] ∧N even

max{s− k, s−N}, s ∈ (s∗N , 1] ∧N odd.
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Proof. In appendix C. �

Theorems 4.1 through 4.5 show that bias is maximized when the true weighting function has achieve-

ment thresholds, flat regions, cardinal regions, and kinks. Both W+
0 and W−0 generically consist of

regions where increases in scores are not valuable, regions where the true value increases 1-1 with

observed test scores, and discontinuous achievement thresholds where the true value jumps up by a

large amount. Although these worst-caseW0’s may look extreme compared with most test scales, they

are not economically implausible. For example, consider a test score equal to the share of the Russian

Cyrillic alphabet that a student knows. This test scale is interval in the sense that each score increment

of 1
33 corresponds to a new, identifiable skill: knowing a letter of the alphabet. However, a plausible

economic weighting should be mostly flat for scores between 0 and 32
33 and display a sizable jump up

between 32
33 and 1 because knowing the whole alphabet is a prerequisite for reading and writing in

the Russian language. Similarly, a job may require a constellation of skills such that the productivity

of a worker lacking any one of the skills is 0 while the productivity of a worker possessing all of the

requisite skills is quite high. Finally, selective institutions may employ admissions thresholds, again

creating discontinuities and kinks in the economically-relevant score weighting function.

5. Extensions

The approach presented in section 4 is substantially more general than it might at first appear.

In particular, similar methods can be applied to bound both the bias in regressions using test scores

as outcome variables and the bias in mean difference calculations when achievement has multiple

dimensions. A complete, formal analysis of these extensions is beyond the scope of the present paper.

In this section, I sketch out results for two special cases. First, I demonstrate that theorems 4.4 and

4.6 can be straightforwardly applied to bound the bias in regression coefficients of test scores on binary

predictor variables. Second, I show that these same theorems can be used to bound mean differences

when there are multiple dimensions of achievement that enter W0 additively separably.23

Consider the ordinary least squares (OLS) regression of s on some binary indicator D. The goal is

to characterize the worst-case bias in the resulting regression coefficient on D due to misspecification

in the scale of s. The probability limit (plim) of the OLS estimator in this baseline regression is

β(I) = E[s|D = 1] − E[s|D = 0]. If instead we had regressed D on W0(s), the plim of the resulting

regression coefficient would be β(W0) = E[W0(s)|D = 1] − E[W0(s)|D = 0]. The difference in these

23The techniques from section 4 can also be adapted to study regressions of test scores on continuously distributed
covariates. A rigorous analysis of this extension is the subject of ongoing work that should appear as a separate working
paper in the coming months. In contrast, analyzing multiple dimensions of achievement when W0 is not additively
separable presents substantial technical problems and is an area of active research.
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plims is

∆β ≡ (E[W0(s)|D = 1]− E[W0(s)|D = 0])− (E[s|D = 1]− E[s|D = 0]) .

Let f0 denote the pdf of s conditional on D = 0, and f1 the pdf conditional on D = 1. ∆β can then

be written as ∆β =
´ 1

0
(W0(s)− s) [f1(s)− f0(s)]ds. This is exactly the same objective function that

yields W+
0 (s|k) and W−0 (s|k) as worst-case weights under the restriction that D(W, I) ≤ k assuming

that ∆f ≡ f1(s)− f0(s) satisfies either (A3) or (A4).24

The assumption maintained thus far that achievement has only one dimension is unrealistic: a large

and growing body of research suggests that there are multiple types of achievement relevant for labor

market outcomes.25 The mean-difference bounding analysis can be easily extended to the special case

that there are multiple types of achievement that enter welfare additively separably. In particular,

suppose that achievement has two dimensions with corresponding ordinally perfect test scores x and

y.26 Let W0(x, y) denote the true cardinal value of the test-score pair (x, y), and suppose that this

function is known to be additively separable: W (x, y) = H(x) + G(y) for two increasing functions H

and G. Denote by F , Fx, and Fy the joint and marginal distributions of x and y, respectively.

Additive separability in W implies that V (W,F ) can be decomposed into the sum V (H,Fx) +

V (G,Fy).27 In turn, this implies that FA will be preferred to FB for all increasing functions G and H

only if FA,x � FB,x and FA,y � FB,y both hold. The dependence between x and y does not matter

here; all joint distributions F with equal marginals will be ranked equally by any additively separable

W . Additive separability inW does not imply that the bounding analysis can be carried out separately

for each dimension of achievement. There are two subtleties that prevent one from considering each

margin separately in constructing worst-case bounds.

The first subtlety is that using the sup norm to operationalize the distance restriction between

W0 and I links the two dimensions of achievement because the magnitude and sign of the difference

in one dimension determines the range of feasible differences along the other dimension.28 A minor

tweak to the definition of D stating that the sup norm distance restriction must hold separately in

each dimension is sufficient to remove this dependence. Formally, define the new distance measure as

follows:

24The assumption that ∆f satisfies (A3) or (A4) in this context is again quite general and will be satisfied in many
economically relevant settings. D can always be defined such that ∆f , and not −∆f , satisfies (A3) or (A4).
25Kautz, Heckman, et al.[24] provides a good introduction to and overview of this literature.
26In empirical work, researchers typically assume that these dimensions are latent factors and that observed test scores
depend on some combination of the underlying factors. I abstract from these issues here, and simply suppose that we
can craft tests which ordinally measure achievement along each relevant dimension.
27To see this, note that V (W,F ) =

˜ 1
0 H(x)f(x, y)dydx +

˜ 1
0 G(y)f(x, y)dydx. But

˜ 1
0 H(x)f(x, y)dydx =´ 1

0 H(x)fx(x)dx = V (H,Fx) and
˜ 1

0 G(y)f(x, y)dydx =
´ 1
0 G(y)fy(y)dy = V (G,Fy).

28To see this, consider the restriction D(W0,W ) ≤ k and suppose that supx[H0(x) − H(x)] = λk for some λ ∈ (0, 1).
Then the maximum possible value of supy [G0(y)−G(y)] is (1− λ)k, while the minimum possible value is −(1 + λ)k.
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Definition 5.1. Suppose that W (x, y) = H(x) + G(y) and W̃ (x, y) = H̃(x) + G̃(y). The pairwise

distance between W and W̃ is defined as

Dp(W, W̃ ) = max

{
sup
x∈[0,1]

|H(x)− H̃(x)|, sup
y∈[0,1]

|G(y)− G̃(y)|
}
.

It is straightforward to verify that Dp is a valid distance measure. Under Dp, the possible values of

G̃(y) consist of the entire interval [G(y)− k,G(y) + k] for any functions H̃ and H.

The second subtlety is that it may not be possible to define A and B such that ∆fx and ∆fy

simultaneously satisfy (A3) or (A4). For example, if ∆fx and −∆fy both satisfy (A4), then no

reshuffling of labels can bring both ∆f ’s into alignment. Since A and B may be interchanged freely,

there are only two distinct situations to consider: ∆fx and ∆fy both satisfy (A4) or only one of

them does. These cases can be handled by noting that in the single-dimensional case W+(s|k,∆f) =

W−(s|k,−∆f) and W−(s|k,∆f) =W+(s|k,−∆f) always hold.

Theorem 5.2. Suppose that (A1) and (A2) hold and that Dp is used as the measure of distance

between weighting functions. If ∆fx and ∆fy both satisfy (A4) for Nx and Ny, W+
x and W+

y are given

by equation 4.5 while W−x and W−y are given by equation 4.6. If instead ∆fx and −∆fy satisfy (A4),

then the worst-case weights for x are unchanged. In contrast W+
y is given by equation 4.6 and W−y is

given by equation 4.5.

Theorems 5.2, 4.4, and 4.5 give a general method for constructing worst-case weighting functions in the

two dimensional case. This analysis can be generalized easily to more than two dimensions, provided

that W0 is additively separable in all dimensions.

6. Empirical Sensitivity Analysis

This section assesses the sensitivity to cardinal scale misspecifications of standard achievement

gap/change estimates derived from several commonly used data sets. My basic approach is to use

empirical test-score distributions to estimate the ∆f associated with some achievement gap/change

of interest. Given an estimate for ∆f , I then numerically approximate B̄+(k) and B̄−(k) for various

values of k. The headline conclusion from this exercise is that cross-sectional gaps are often quite

robust to cardinal deviations, whereas gap changes are typically much less robust. The values of k

that are needed to flip the sign of most cross-sectional estimates are quite large (or non existent in the

commonly occurring case that FOSD holds), while the values of k that are needed to flip the sign of

many gap change estimates are much smaller.

6.1. Data and Method. I employ four commonly-used surveys in this paper: the NLSY 1979 and

1997, the NELS 1988, and the ELS 2002. The two NLSY surveys were designed to be nationally
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representative and directly comparable to each other, as were the NELS and the ELS. All four surveys

have comparable demographic, income, and achievement data that allow me to estimate both income

and racial achievement gaps/changes. Please refer to appendix D for a more detailed discussion of

these data.

I always restrict my analysis to students who were between the ages of 15 and 17 at the time of

testing. I make this restriction for two reasons. First, students in this age range are relatively close to

completing school, so their test scores should provide a summary of the cumulative effects of endow-

ments and investments over time by parents, schools, and the students themselves. Second, estimates

using a narrow range of student ages are not sensitive to how test scores are adjusted for student age.

I do not age adjust the test scores in my baseline specifications. However, using age-adjusted scores

yields similar conclusions about the sensitivity of achievement gaps to scale misspecification. Because

of the timing of the surveys, I use the first follow-up survey from the NELS, collected in 1990. I use

base-year data for the remaining three surveys.

Valid gap change estimates require that test scores have a constant interpretation over time.29

Fortunately, it is possible to scale achievement scores in these surveys such that students from the

NELS can be ranked consistently against students from the ELS and students in the NLSY79 can be

ranked consistently against students in the NLSY97. Although the exact psychometric details differ

somewhat between the pairs of surveys, the basic feature that allows such a scaling is the existence

of a group of test takers who answered test questions appearing on both of the relevant achievement

tests.

Each pair of surveys collect consistently defined and comparable student demographic and household

income variables. The demographic comparisons I make are by race, sex, and household income. The

only subtleties involve the use of income. For the NLSY surveys, I use a comprehensive measure of

household income that sums income for all household members from all sources. I use this continuous

variable to define high-income youth as those respondents with household income in the top 20% of the

year-specific household income distribution and low-income youth as those in the bottom 20%. The

NELS and ELS surveys only record income categorically, so I define “high-income” and “low-income”

to be the sets of categories that most closely approximate the upper and lower quintiles. The ELS

employs imputation to fill in missing values of income and other demographics. I drop the imputed

values, and I also drop missing observations and invalid responses for all variables in all four surveys.

At present, my analysis does not adjust for selection into the final sample.30

29In many data sets, test scores are renormed each year, invalidating this assumption. Simply normalizing scores to
have a mean of 0 and a standard deviation of 1 within each year/age group is not likely to be an adequate response.
30In Nielsen[16] and follow-up work using the NELS/ELS, I find that neither ordinal nor cardinal income-achievement
gap/change estimates are sensitive to these choices. This does not automatically imply, however, that the estimated
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I approximate ∆f , W+
0 , W−0 , ∆V (W+

0 ), and ∆V (W−0 ) numerically. I estimate the various ∆f ’s

by first estimating each component density on a grid using a smoothed kernel estimator. I then re-

normalize the densities so that each has support on [0,1] and estimate ∆f as the sum or difference

in these normalized distributions. Importantly, I use the same normalization for all of the component

densities in ∆f , which guarantees that the normalized scores will still correctly order students from

different surveys by their underlying achievement. W+
0 and W−0 are parametrized by their values at

the zeros of ∆f . Therefore, I search over a grid of all possible values of these crossing points and select

the configuration that maximizes bias given k. The results are not very sensitive to the fineness of the

grid I employ.

6.2. Black/White Achievement Inequality. The ∆f functions relevant for assessing black/white

achievement inequality all satisfy either (A3) or (A4) for N = 2 or N = 3. Both ∆f1990 and ∆f2002

satisfy (A3) in the NELS/ELS data; white achievement is much higher than black achievement in both

surveys. Furthermore, −∆ft+1,t satisfies (A4) for N = 3 for both math and reading.31 All of the

cross-sectional ∆ft’s again satisfy (A3) in the NLSY data, while the gap-change ∆ft+1,t’s satisfy (A4)

for either N = 3 (math) or N = 2 (reading). Figures A.7-A.8 plot these ∆f functions.

Figure A.9 plots ∆V (I,∆f), ∆V (W−0 ,∆f), and ∆V (W+
0 ,∆f) as functions of k for both math

and reading achievement in the NELS/ELS data. The qualitative results are the same for both

achievement measures, so I will discuss only the math estimates. The observed math gap in the ELS

is somewhat larger than the observed gap in the NEL90. Standard methods would therefore conclude

that achievement inequality increased between the two surveys.32 As k grows larger, ∆V (W+
0 ,∆f)

and ∆V (W−0 ,∆f) diverge from the observed cross-sectional gaps in each survey. ∆V (W−0 ,∆f) crosses

0 and turns negative for at k ≈ 0.34 in the NELS; the observed black/white achievement gap in the

NELS may not even correctly identify the sign of the true gap. In contrast, ∆V (W−0 ,∆f) never

crosses 0 in the ELS data; misspecified test scales will never misidentify the sign of the black/white

achievement gap in this survey. The observed black/white achievement gap change between the NELS

and ELS is slightly greater than 0. As before, both ∆V (W+
0 ,∆f) and ∆V (W−0 ,∆f) fan out from

sensitivity to cardinal deviations will be similarly unaffected. I will check the robustness of my results to these data
choices in future work.
31(A4) with N = 3 only holds for math achievement after the difference in the kernel-smoothed density estimates is
smoothed one more time. For low values of s, the “raw” density difference bounces around close to 0, barely crossing
0 a number of times. Technically, then, I should compute bias in this case using (A4) and N = 5. I smooth a second
time because removing these wiggles results in substantial improvements in computational speed and code simplicity.
Furthermore, since the initial smoothed density estimates are only approximations, and since regions where ∆f is close
to 0 cannot contribute much to total bias, the conclusions derived using the twice-smoothed data should be almost
identical to those using the unsmoothed density difference.
32The thought experiment here is that these observed gaps and ∆f estimates are the population values as the group
sample sizes tend to infinity.
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the observed gap as k increases. ∆V (W−0 ,∆f) crosses 0 at k ≈ 0.29. The change in the black/white

achievement gap is relatively robust to cardinal deviations in these data.

Figure A.10 plots ∆V (I,∆f), ∆V (W−0 ,∆f), and ∆V (W+
0 ,∆f) as functions of k for the NLSY

data. The cross-sectional achievement gap estimates are somewhat less sensitive to k than the gaps

in the NELS/ELS data. The sign of the math gap will never be misidentified in either survey. For

k > 0.39, the reading gaps using W−0 turn negative, but they remain very close to 0. With slightly

different smoothing settings on the kernel estimation, these asymptotes also remain above 0.33 In

contrast to the NELS/ELS data, the observed mean difference in scores suggests that black/white

inequality decreased moderately between these two surveys. However, these gap change estimates are

much more sensitive to changes in k. ∆V (W+
0 ) crosses 0 and becomes positive at k ≈ 0.1.

6.3. High-/Low-Income Achievement Gaps/Changes. I repeat the sensitivity analysis in the

NELS/ELS and NLSY for achievement gaps/changes between youth from high- and low-income house-

holds. Generally, the cardinal sensitivity is more pronounced for income-achievement gaps/changes

than for black/white estimates. Figure A.12 shows that the cross-sectional ∆f ’s for math and reading

in the NELS/ELS data satisfy (A3), while the gap-change ∆f ’s satisfy (A4) for N = 3 (math) or

N = 2 (reading). Figure A.13 plots the cross-sectional and gap-change ∆V ’s for different values of k.

The observed cross-sectional gaps are positive and quite large.34 For math achievement, the observed

gap in the NELS is slightly larger than the observed gap in the ELS, while for reading achievement

the situation is reversed. In neither survey does ∆V (W−0 ) for math ever drop below 0. For reading

achievement, ∆V (W−0 ) barely dips below 0 for k > 0.4 in the NELS and never crosses 0 in the ELS.

In contrast, the income-achievement gap change estimates are not at all robust. The observed

gap changes are fairly close to 0, so that relatively small values of k are sufficient to flip the sign

of the observed versus the true gap change. In the NELS/ELS data, ∆V (W+
0 ) for math goes from

negative to positive at k ≈ 0.1, while ∆V (W−0 ) for reading flips from positive to negative at k ≈ 0.04.

Cardinal methods applied to almost any test scale would correctly identify a large positive income

achievement gap in any cross section, but cardinal methods applied to misspecified scales could quite

easily misidentify the sign of the gap change in the NELS/ELS data.

6.4. What if Z-Scores Are Used? The calculations in section 6.3 deviate from most of the literature

on achievement inequality in that they do not use cohort/year/age z-scores to estimate achievement

differences. Instead, they use equivalent scores that enable one to rank students from different surveys

against each other consistently. There are strong reasons to prefer equivalent scores, and there is no

33I plan to develop valid inferential procedures for this setting in future work.
34In many data sets covering recent decades, the top vs. bottom quintile achievement gap measured in standard-deviation
units is roughly equal to the black/white achievement gap.
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reason to think that z-score gap/change estimates will be more robust to cardinal deviations. Indeed, I

demonstrate in this section that estimates computed using z-scores are similarly, if not more, sensitive

to cardinal deviations than estimates using equivalent scores.

Figures A.11 and A.14 reproduce figures A.9 and A.13 for black/white achievement gaps/changes in

the NELS/ELS data using survey/age z-scores instead of equivalent scores. The difference in robustness

between cross-sectional and gap-change estimates is even starker using z-scores. Neither cross-sectional

black/white math gap ever falls below 0, while the W−0 -measured gap change flips sign at k ≈ 0.06.

This is a much lower critical value than the k ≈ 0.3 needed to flip the sign using equivalent scores.

The z-score gap/change estimates for reading achievement likewise do not suggest greater robustness

to cardinal deviations. The differences in cross-sectional income-achievement gap sensitivity are less

dramatic. The income-achievement gap change estimates are substantially more sensitive to cardinal

deviations than are the cross-sectional estimates; the observed gap change using reading z-scores is

very close to 0, so that the sign of the estimate flips at k ≈ 0.

6.5. The Magnitude of k. The empirical estimates using the NELS and ELS cohorts showed that

some achievement gaps/changes are identified up to sign no matter how different the true and observed

test scales are. For other achievement gaps/changes, the sign may be misidentified by the observed

test scores for sufficiently large values of k. The magnitude of the smallest k for which a sign reversal

is possible varies enormously across different comparisons, from a minimum of 0.04 to a maximum of

0.4. Since the bounding analysis is well-defined for any k in [0,1], a value of 0.04 might seem small and

0.4 might seem large. However, it is not actually clear what the scale of k means. Pinning down the

scale of k is a fundamentally hard problem since the relevant units of achievement are not knowable

(remember that I simply normalized both s and W0(s) to be in [0,1]). This section explores a number

of methods to determine what constitutes a “large” or a “small” value of k.

Education researchers are familiar with test scores normalized to have a mean of 0 and a standard

deviation of 1. Although my work here and in other papers questions whether such z-scores have an

interpretable scale, it is still possible for me to report ∆V +, ∆V −, and k in standard-deviation units.

For instance, the math z-scores in the NELS and ELS have a range of -2.2 to 2.4, which implies that

k = 0.04 corresponds to 0.18 = (2.4 + 2.2)× 0.04 standard-deviation units, while k = 0.4 corresponds

to 1.8 standard-deviation units. Students typically gain about 0.07 standard deviations of achievement

per month in primary school, so a difference of 0.18 is neither very large nor very small by this metric,

while 1.8 is huge.35 Cross-sectional black/white and high-/low-income mean achievement gaps are

35Krueger[12] uses the Tennessee STAR experiment to estimate that smaller class sizes correspond to about 0.22 standard
deviations. He argues that this figure corresponds to about 3 months of progress in school. Since most of the literature
examining the effects of various inputs on student achievement apply cardinal methods to z-scores, I can compare the
“z-score” units of k to virtually any educational effect size I wish. For example, Hanushek and Rivkin [10] review the
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typically around 0.5 to 0.8 standard deviations, again making k = 0.04 seem relatively small and

k = 0.4 relatively large.36

Figure A.15 plots W+
0 and W−0 for k = 0.1 and k = 0.4 using the income-achievement math ∆f

estimated from the NELS/ELS data. For these data, k = 0.1 is sufficient for the observed test scores

to misidentify the sign of the true gap change. The right panel of figure A.15 shows that the worst

case weighting functions for k = 0.1 do not look particularly extreme. Under both W+
0 and W−0 , the

observed scores are cardinal for most of [0,1], and neither weighting function ever strays too far from

the identity function. In contrast, W+
0 and W−0 look very different from the identity when k = 0.4; the

observed scores are almost never cardinal and the jumps at the achievement thresholds are very large.

Figure A.16 plots W−0 (s|k = 0.04) and W+
0 (s|k = 0.04) for the case that ∆f is symmetric and satisfies

(A3). Since ∆f is symmetric, all of the weighting functions are symmetric as well. Visual inspection

suggests that k = 0.04 is not much of a deviation, while k = 0.40 marks a substantial departure from

cardinality.

6.6. Estimation Error. The analysis so far has ignored estimation error in calculating the values k∗

for which the W+
0 or W−0 -weighted gaps/changes flip sign relative to their observed counterparts.37

The ∆f ’s that critically determine the sensitivity of the gap/change estimates to cardinal deviations

are themselves estimated from the data. The true ∆f ’s might differ substantially from their sample

analogues, which implies that the estimated k∗’s may differ from their population values.

From one perspective, this concern is secondary to the main thrust of the paper. The estimated

∆f ’s are consistent estimates of the population ∆f ’s, and, as such, they are plausible guesses for ∆f ’s

that govern bias in important, applied settings. The empirical results show that for most of these ∆f ’s,

it is possible to flip the sign of the gap/change estimate for sufficiently large values of k. Furthermore,

the results show that k∗ is often quite small. Even without knowing the estimation errors associated

with my empirical procedure, I have certainly supplied ample evidence that cardinal methods applied

to test-score data are quite likely to be sensitive to scale misspecification.

However, in order to state with confidence that the specific gaps/changes I have identified as being

sensitive to cardinal deviations are in fact sensitive to cardinal deviations, I need some way to account

for the effect of estimation error on ∆V + and ∆V −. Bootstrapping is difficult to implement in this

literature on teacher value-added models and report that a standard deviation in teacher performance is associated with
student gains on the order of 0.1 to 0.2 standard deviations.
36In my data, the black/white math gap is 0.79 in the NELS and 0.84 in the ELS. Fryer and Levitt[7] estimate black/white
achievement gaps for early elementary school students of between 0.4 to 0.7. Reardon[19] estimates the math achievement
gap between students from the 90th and 10th percentiles of the household income distribution to be around 1 in the
NELS and 1.1 in the ELS. In contrast, I estimate that the NELS math income-achievement gap is 1.039 and in the ELS
it is 0.904.
37Formally, define k∗ = inf{k|∆V (W−0 (s|k),∆f) < 0} if ∆V (I,∆f) > 0 and k∗ = inf{k|∆V (W+

0 (s|k),∆f) > 0} if
∆V (I,∆f) < 0 in the case the a sign flip is possible. If there is no such k, then set k∗ = 1.
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setting because the forms of W+
0 and W−0 depend on the number of times ∆f crosses 0, and different

bootstrap iterations may result in ∆f ’s that cross 0 a different number of times. This problem is most

acute for the empirical estimates of gap changes; the cross-sectional ∆f ’s essentially never cross 0 more

than once on the interior of [0,1]. An additional difficulty is that the bootstrap has not been formally

justified in this setting. Working out these theoretical and empirical challenges is on the agenda for

future research.

7. Power and Size Calculations

I have shown that for sufficiently large values of k, cardinal methods using observed test scores

may misidentify the sign of an achievement gap/change in the limit as the group sample sizes tend

to infinity. For small values of k, the incorrectly-specified scale will correctly identify the sign of the

achievement gap/change, although the relative magnitudes of the true and observed gaps may be quite

far off. In this case, is there any advantage to using the comparatively simple, cardinal approaches

familiar to most researchers? It turns out that there is: statistical power. In a loose sense, cardinal

methods use more of the information contained in the test-score distribution. If that information

mostly preserves the relevant cardinal differences in the true test scale, then such methods may be

more likely to reject false null hypotheses at a given level.

7.1. Theoretical Discussion, Cross-Sectional Achievement Gaps. Consider the problem of as-

sessing which of two test-score distributions, FA or FB , represents greater overall achievement given

independent, random samples of sizes NA and NB from each population. Suppose that FA � FB , so

that any reasonable method for assessing achievement differences should asymptotically reject with

probability 1 the null hypothesis that group B has more achievement. Given that FA � FB is true,

the power of a given testing procedure is just the probability that the false null FB � FA is rejected.

I use the procedure developed in Barrett and Donald [2] to test for stochastic dominance. This

method allows one to test the null H0 : FB(s) ≤ FA(s)∀s against the alternative H1 : ∃s̃|FB(s̃) > FA(s̃)

using a test statistic, B̂D, that is a modified form of the well-known Kolmogorov-Smirnoff statistic.38

Since the null of this test is exactly the false null that we wish to reject when FA � FB , the relevant

power is just the probability that this null is rejected. To my knowledge, there is no analytic formula

for the power of this test. Therefore, I use simulation in the next section (7.2) to compare the power of

the Barrett and Donald testing procedure to the power of (cardinal) z-tests of the difference in group

means when FA � FB .

38Formally, they define B̂D ≡
√

NANB
NA+NB

sups

(
F̂A(s)− F̂B(s)

)
, F̂G(s) =

∑NG
i I(si < s) and show that Pr(B̂D >

c)→ exp
(
−2c2

)
when (NA, NB)→ (∞,∞) such that NA

NB+NA
→ λ > 0. This implies that the level-α critical value cα

is given by cα =
√
− 1

2
ln(α).
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Suppose it is known that the test-score distributions of groups A and B have the same shape but

that FA is shifted to the right relative to FB .39 Let σG and µG represent the standard deviation and

mean respectively of the test scores in groups G ∈ {A,B}. Since FA is simply FB shifted to the right,

σA = σB and µA > µB . In this case, the null and alternative hypotheses that correspond to the

B̂D test of FOSD are H0 : ∆µ ≤ 0 and H1 : ∆µ > 0 where ∆µ ≡ µA − µB . The statistic Ẑ∆µ ≡
∆̂µ

σ
√
N−1

A +N−1
B

is asymptotically a standard normal random variable that can be used for hypothesis

testing. It is straightforward to show that the power function for this test at level α is π(∆µ) =

1− Φ

(
zα − ∆µ

σ
√
N−1

A +N−1
B

)
.40

Section 4 showed that for a fixed k, W+
0 and W−0 have flat regions and/or discontinuous jumps.

These features have the potential to affect the power of both cardinal and ordinal tests of achievement

gaps. To see why, consider ordinal testing in the case that FA � FB such that FA(s) = FB(s)∀s /∈ [s, s̄]

and W0(s) = c,∀s ∈ [s, s̄]. Under these assumptions, the observed test score distribution for group

A dominates the score distribution from group B, but the economically relevant score distributions

of the two groups, HA and HB , are equal. In this case, FOSD tests will always reject the null that

FA � FB as the group sample sizes jointly tend to infinity. However, the economically relevant null

is not whether FB dominates FA but whether HB dominates HA. Since HB = HA by construction,

FOSD tests of the correctly weighted score distributions will never reject the null for arbitrarily large

samples. This situation will also cause z-tests on the observed scores to lead researchers to the wrong

conclusion; the observed difference in means will be positive while the true difference in means is 0.

The example in the previous paragraph is quite extreme. In all of the simulations and empirical es-

timates I have presented, F̂A(s) 6= F̂B(s) almost everywhere. Furthermore, W+
0 and W−0 will typically

have non-flat regions precisely where F̂A and F̂B are most different. Nonetheless, stochastic dominance

tests and z-tests (or t-tests) of mean differences will typically have different rejection rates depending

on whether the observed scores or the true scores are used.

Ordinal FOSD tests using W+
0 and W−0 reject the null at different rates than tests using the

observed scores only because W+
0 and W−0 are not strictly monotone functions of the observed scores.

However, there is an interpretation of W+
0 and W−0 that avoids this problem. Consider an amendment

to assumption (A2) stating that W0 be strictly increasing everywhere on [0,1] with derivative never

less than ε > 0. Under this alternative version of (A2), it is straightforward to show that W−0 (s|k)

and W+
0 (s|k) as defined in theorems 4.1 to 4.5 are just the limits of W−0 (s|k, ε) and W+

0 (s|k, ε) as

39That is, fA(s) = fB(s− δ)∀s.
40If the variances are estimated from the data, then t-tests should be used instead of z-tests. In practice, for group
sample sizes larger than 50, t-tests and z-tests provide virtually identical power for a given level α. All of these formulas
hold exactly in the limit as NA and NB jointly go to ∞, or in the case that the score distributions are jointly normal
and independent. However, the formulas will be very close approximations in even moderately sized samples.
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ε → 0. Since B+ and B− are smooth functions of W+
0 and W−0 , the upper and lower bounds for ∆V

can be thought of as the limits of the bounds using W−0 (s|k, ε) and W+
0 (s|k, ε) as ε → 0. For a very

small value of ε, these bounds will be indistinguishable from each other. As long as ε > 0, the power

of ordinal tests will be unchanged for any k. Put differently, there is a discontinuity in the power

function of the ordinal tests when ε hits 0. Please refer to appendix C for a formal demonstration of

these various claims. Figure C.1 in that appendix plots W−0 (s|k, ε) and W+
0 (s|k, ε) in the case that

∆f satisfies (A3).

Unlike ordinal tests, the power of z-tests using the correctly weighted sample means is a smooth

function of ε for any k. This fact has several important implications. First, it implies that the power

of the z-test will generally be a function of k for any ε ≥ 0. Therefore, z-tests using the observed

score distributions will either be too likely or too unlikely to reject the relevant null compared with

the same test applied to the true test scale. Second, it implies that for ε ≈ 0 and k small, z-tests using

the observed scores will have greater power than ordinal FOSD tests. However, as k increases, the

power of the z-tests applied to the true scores will decrease (or increase) depending on the sign of the

observed gap and whether one looks at B+ or B−. At some point, the power of the cardinal tests for

either W+
0 or W−0 may fall below the power of the FOSD tests. Furthermore, as k grows large, the

difference between the power of the z-test applied to the observed scores and the power of the z-test

applied to the true scores will widen. In contrast, the power of the ordinal test does not depend on k.

The application of the B̂D statistic to testing achievement gap changes is only slightly more involved.

In a parallel working paper, I show that there are two conditions necessary to infer that the achievement

gap between groups A and B narrowed unambiguously between periods t and t + 1: FA,t � FA,t+1

and FB,t+1 � FB,t. In other words, group A’s achievement needs to have declined unambiguously,

while group B’s achievement needs to have increased. If at least one of these stochastic dominance

relationships is strict, then any increasing set of weights W would assess a smaller achievement gap in

t+ 1 than in t.41 These stochastic dominance relationships can be tested using the same B̂D statistics

that I used to test cross-sectional gaps.

The cardinal analysis for gap-changes involves only a slight modification of the cross-sectional ap-

proach. Suppose now that FA,t, FB,t, FA,t+1, and FB,t+1 are identical except for location. Let ∆µt

denote the difference means between group A and group B in time t and suppose µA,t ≥ µA,t+1 and

µB,t ≤ µB,t+1 hold with at least one of the inequalities strict. These assumptions imply that the

41As formulated, it is possible for either FB,t � FA,t or FB,t+1 � FA,t+1. I will usually study empirical settings where
the “high” group A dominates the “low” group B in each cross section, but if this is not the case, nothing of importance
changes. Instead of the gap narrowing, one would just say that B gained relative to A unambiguously.
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achievement gap unambiguously decreased between t and t + 1. As before, an appropriately chosen

z-test is adequate to test the null that the gap increased against the alternative that it decreased.

7.2. Simulation Results. I simulate cross-sectional achievement gaps when FA = N(µA, σ
2) and

FB = N(µB , σ
2) and µA ≥ µB . If µA is strictly greater than µB , then FA first-order stochastically

dominates FB , which implies that cardinal methods will correctly identify the sign of the achievement

gap for any k < 0.5 and will never identify a negative gap for any k.42 Since cardinal and ordinal

methods will agree in the limit for any k, it is sufficient in this case to compare cardinal tests of

µA ≥ µB against ordinal tests of FOSD. I use simulated data to estimate the power of the BD test

and compare it to the theoretical z-test power.

Figure A.17 shows the simulated power of the BD test against the theoretical power of the z-test.

The left panel shows that both of these powers increase as the sample sizes increase, holding ∆µ fixed.

The right panel plots both powers as a function of ∆µ holding N fixed at 500. For small ∆µ, neither

test is very powerful, and both powers increase monotonically as ∆µ increases. Strikingly, for a given

pair (N = NA = NB ,∆µ), the power of the z-test lies always above the power of the BD test.43 When

the observed test scores are cardinally comparable, cardinal methods are always more powerful. The

figure also shows the power curves using test scores rescaled according to W−0 (�|k = 0.1). The basic

patterns are largely unchanged, but the tests using W−0 are uniformly less powerful than those using

the raw scores. This is intuitive, as by constructionW−0 narrows the true mean gap as much as possible

given k. It is interesting to note that drop-off in power as k increases is much more dramatic for the

BD tests than for the z-tests.

Figure A.18 compares the power of the z-test applied to W−0 (s|k) for different values of k to the

power of the BD test applied to the original test scores when ∆µ = 0.25 and N = 200. Applying the

BD test to the raw scores is motivated by the re-conceptualization of W ∗0 (s|k) as limε→0W
∗
0 (s|k). The

power of the BD test does not depend on k, while the power of the z-test applied toW−0 (s|k) decreases

monotonically in k. For small values of k, the power of the z-test is very close to its power applied to

the raw scores and is strictly above the power of the BD test. As k increases from 0, these two powers

get closer to each other, eventually crossing. This means that for values of k close to 0, z-tests applied

to the true scores will be more powerful than ordinal tests of FOSD. However, when the k is large,

ordinal tests will actually be more powerful.

The simulation results for achievement gap changes yield essentially the same conclusions. If the

observed test scores are truly cardinal, then cardinal tests will have greater power. Cardinal tests will

continue to be superior for small values of k, but as k grows, cardinal tests lose power. Ordinal tests

42When k ≥ 0.5, W−0 is 0 on [0,0.5) and 1 on [0.5,1], resulting in a gap estimate of 0.
43Except for ∆µ = 0, in which case both have power equal to α.
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will be more powerful in most cases given a sufficiently large k provided that one adopts the “small ε”

interpretation of W+
0 and W−0 .

The alert reader may have noticed something peculiar about this discussion. My claim is that when

k is large, the correctly weighted test score gaps/changes may be quite close to 0. For a given sample

size, this means that as k increases, the power of cardinal tests applied to the true scores to determine

the sign of the achievement/gap change decreases. At the same time, under the small-ε interpretation

ofW+
0 andW−0 , ordinal tests are unchanged for any k such that the true and the observed gap/change

have the same sign. But if the true mean difference in the scores is very close to 0, shouldn’t cardinal

tests on these scores accurately measure this difference? Why is it desirable for ordinal statistics to

identify an arbitrarily small gap/change? The solution to this conundrum consists of two observations.

First, the difference in power is driven by the fact that ordinal statistics only attempt to determine the

sign of a given gap/change, while cardinal methods attempt to determine both the sign and magnitude

of the gap/change. Second, W0 ∈ [0, 1] is just a normalization. The economic scale of W0 might

be huge. For example, consider W0 denominated in units of lifetime income. For such a weighting

function, even a very small difference in the normalized scale might correspond to an economically

significant difference in the un-normalized scale.

8. Conclusion and Extensions

This paper develops a method for assessing the sensitivity of standard achievement gap/change

estimates using test-score data to cardinal deviations in the test scale. The method makes precise the

intuitive idea that cardinal methods will provide mostly valid inference on achievement gaps/changes

when the true scale and the observed scale are very close to each other and very incorrect inference

when the two scales are very different. The approach is readily interpretable and straightforward to

apply in most real-world empirical scenarios.

I use my proposed method to investigate the cardinal sensitivity of standard achievement gap/change

estimates in the NLSY and NELS/ELS data. I find that cross-sectional black/white and high-/low-

income achievement gaps are usually robust to cardinal deviations in these data. In many cases, there

is no rescaling of the test scores that would reverse the sign of the estimated gap, while in other cases

the true scale would have to be quite different from the observed scale in order for the sign of the

estimate to be misidentified. In contrast, achievement gap change estimates in these data are much

less robust; even small deviations in the cardinality of the true scale relative to the observed scale are

often sufficient to reverse the sign of the estimate. Not only might standard methods misidentify the

sign of an achievement gap/change in the limit as the sample sizes tend to infinity, they will also have
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incorrect size and lower power than ordinal methods in finite samples if the test scale is incorrectly

specified.

Cardinal statistical methods are easy to use and familiar to most researchers. If the observed test

scale is close to the true scale, cardinal methods are preferable because they have greater power than

ordinal approaches. This paper has shown that relying on such methods may lead one very far astray if

the true scale and the observed test scale are sufficiently different from each other. Ultimately, the true

scale of achievement is unknowable in most applied work. The researcher must use her own judgment

about how to use test-score data. However, if my sensitivity method shows that a given conclusion using

cardinal methods is quite sensitive to the (essentially arbitrary) test scale used, applied researchers

may wish to abandon cardinal approaches and instead rely only on the scale-independent, ordinal

content of the test scores.

Both the theoretical and empirical work presented here are quite preliminary, and each calls out

for a number of extensions. The bounding analysis depends on the choice of distance measure. The

sup norm is a plausible distance measure to use, and it yields tractable expressions for the worst-case

score weighting functions. Nonetheless, other distance measures, such as the Wasserstein distance,

may produce bounds that are easier to interpret. Empirically, it would be worthwhile to extend the

sensitivity analysis to other achievement gaps/changes and other data sets. It would also be useful to

work out more completely how to conduct valid inference on k∗. Finally, future work should investigate

the applicability of the methods presented here to non mean-based cardinal uses of test scores.
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Appendix A. Figures

Figure A.1. W0 Functions Satisfying (A2)

0 1s

W0(s)

(1,1)1

Note: Plot shows five weighting functions consistent with (A2). The red dotted curve is the identity and is the
weighting function assumed when achievement gap/changes are estimated using differences in sample means. The
other curves ( purple solid, green dash-dot, orange dash-dot-dot, and blue dashed) demonstrate the W0 can be convex,
concave, discontinuous, and nondifferentiable and still satisfy (A2).
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Figure A.2. Examples of ∆f ’s Satisfying (A3) and (A4)

(A3)

(A4)

s∗

s∗3s∗2s∗1 s∗4 s∗5 s∗6

0

0

0 1

Note: (A3) and (A4) do not require there to be a single point between consecutive zeros at which ∂∆f
∂s

= 0. This
condition does hold for the ∆f ’s drawn as red dash-dot lines but not for those drawn as dashed green lines.
Furthermore, as the solid magenta curves demonstrate, neither (A3) nor (A4) require ∆f to be 0 at s = 0 and s = 1.
(A3) and (A4) also do not require that the 0’s be evenly spaced on [0,1], as depicted above.

Figure A.3. W+
0 (s|k), s∗ > k and 1− s∗ > k

I(s)

s∗0 1

∆f

0

0

1

k

k

W+
0 (s) = s− k

W+
0 (s) = s + k

Note: The red dotted line represents the naï¿œve weighting function. The green curve plots W+
0 when

k < min{s∗, 1− s∗}. For values of s less than k or greater than 1− k, W+
0 is flat. W+

0 increases 1-1 with s on the
interval [k, 1− k] except for the point s∗ = 0.5, where W+

0 jumps by 2k.
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Figure A.4. W−0 (s|sc, k) for Three Different Values of sc

I(s) = s

s∗0 1

∆f

0

0

1

W−
0 (s|s∗)

W−
0 (s|sc)|sc = s∗ + k

W−
0 (s|sc)|sc = s∗ − k

k

k

sc

sc

sc

Note: The function in green plots W−0 (s|s∗, k) when s∗ − k > 0 and s∗ + k < 1. In this case, the constraint that
D(I,W−0 ) ≤ k binds both above and below s∗. The purple dashed curve shows W−0 (s|sc, k) for sc = s∗ − k where k is
such that sc − k < 0. In this case, D(I,W−0 ) only binds above s∗. Symmetrically, the teal dash-dot curve plots
W−0 (s|sc, k) when sc = s∗ + k and k is such that D(I,W−0 ) only binds below s∗.
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Figure A.5. W+
0 for N = 2 and N = 3

s∗10 1

∆f

0

0

1

W+
0 (s|k, s+2 )| s+2 = s∗2 + k

W+
0 (s|k, s+2 )| s+2 = s∗2 − k

W+
0 (s|k, s+2 )| s ∈ {s∗2 − k, s∗2 + k}

s∗2

s+2

s+2

s+2

k

k

I(s) = s

s∗20 1

∆f

0

1

s∗1 s∗3

W+
0 (s|k, s+2 )| s+2 = s∗2 + k

W+
0 (s|k, s+2 )|s+2 = s∗2 − k

W+
0 (s|k, s+2 )| s+2 ∈ (s∗2 − k, s∗2 + k)

k

s+2

s+2

s+2

I(s) = s

Note: The potential W+
0 ’s are indexed by W+

0 (s∗2) ≡ s+2 . The dashed magenta curves depict the case that s+2 = s∗2 − k
while the teal dash-dot curves assume s+2 = s∗2 + k. The solid green curves show intermediate cases where s+2 lies
between these two extremes.
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Figure A.6. W−0 For N = 2 and N = 3

s∗10 1

∆f

0

0

1

W−
0 (s|k, s−1 )| s−1 = s∗1 + k

W−
0 (s|k, s−1 )| s−1 = s∗1 − k

W−
0 (s|k, s−1 )| s−1 ∈ (s∗1 − k, s∗1 + k)

s∗2

I(s) = s

s−1

s−1

s−1

k

k
k

s∗20 1

∆f

0

1

s∗1 s∗3

W−
0 (s|k, s−1 , s−3 )| s−1 ∈ (s∗1 − k, s∗1 + k) ∧ s−3 ∈ (s∗3 − k, s∗3 + k)

W−
0 (s|k, s−1 , s−3 )| s−1 = s∗1 + k ∧ s−3 = s∗3 + k

W−
0 (s|k, s−1 , s−3 )| s−1 = s∗1 − k ∧ s−3 = s∗3 − k

s−3

s−1

s−3

s−1

s−3

s−1
k

k
I(s) = s

Note: The potential W−0 ’s are indexed by W−0 (s∗1) ≡ s−1 and W−0 (s∗3) ≡ s−3 (for N = 3). The magenta dashed curves
depict the case that s−i = s∗i − k, i ∈ {1, 3}, while the teal dash-dot curves set s−i = s∗i + k. The solid green curves
show intermediate cases where both values of s−i lie between these two extremes.



ACHIEVEMENT GAP ESTIMATES AND DEVIATIONS FROM CARDINAL COMPARABILITY 35

Figure A.7. Black/White Achievement ∆f ’s, NELS/ELS
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Sources: U.S. Department of Education, National Education Longitudinal Study of 1988 (NELS:88),
nces.ed.gov/surveys/nels88/ and Education Longitudinal Study of 2002 (ELS:02), nces.ed.gov/surveys/els2002/

Note: Curves estimated using Epanechnikov smoothing kernels on a grid of 5,000 points. Data cleaned as described in
section 6 and appendix D. The math gap-change ∆f “wiggles” around 0 for low values of s. These wiggles complicate
the use of ∆f in the bounding analysis, so I smooth the curve again prior to estimating W+

0 and W−0 . This additional
layer of smoothing alters the final sensitivity estimates negligibly and greatly speeds up the computation.
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Figure A.8. Black/White Achievement ∆f ’s, NLSY79 and NLSY97
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Sources: Bureau of Labor Statistics, National Longitudinal Surveys of Youth, NLSY79 and NLSY97,
www.bls.gov/nls/nlsy79.htm, and www.bls.gov/nls/nlsy97.htm

Note: Curves estimated using Epanechnikov smoothing kernels on a grid of 5,000 points. Data cleaned as described in
section 6 and appendix D.
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Figure A.9. Black/White Achievement Gap/Change Bounds, NELS/ELS
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Sources: U.S. Department of Education, National Education Longitudinal Study of 1988 (NELS:88),
nces.ed.gov/surveys/nels88/ and Education Longitudinal Study of 2002 (ELS:02), nces.ed.gov/surveys/els2002/

Note: Curves estimated using ∆f ’s calculated on a grid of 5,000 evenly spaced points and 50 evenly spaced values of k.
The left-hand panels show the cross-sectional gaps for the NELS and ELS calculated such that the differences in the
observed curves (perfectly horizontal) equal the observed gap changes in the right-hand panels. Data cleaned as
described in section 6 and appendix D.
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Figure A.10. Black/White Achievement Gap/Change Bounds, NLSY79 and NLSY97
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Sources: Bureau of Labor Statistics, National Longitudinal Surveys of Youth, NLSY79 and NLSY97,
www.bls.gov/nls/nlsy79.htm, and www.bls.gov/nls/nlsy97.htm

Note: Curves estimated using ∆f ’s calculated on a grid of 5,000 evenly spaced points and 50 evenly spaced values of k.
The left-hand panels show the cross-sectional gaps for the NLSY79 and NLSY97 calculated such that the differences in
the observed curves (perfectly horizontal) equal the observed gap changes in the right-hand panels. Data cleaned as
described in section 6 and appendix D.
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Figure A.11. Black/White Achievement Gap/Change Bounds Using Z-Scores, NELS/ELS
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Sources: U.S. Department of Education, National Education Longitudinal Study of 1988 (NELS:88),
nces.ed.gov/surveys/nels88/ and Education Longitudinal Study of 2002 (ELS:02), nces.ed.gov/surveys/els2002/

Note: Curves estimated using ∆f ’s calculated on a grid of 5,000 evenly spaced points and 50 evenly spaced values of k.
The left-hand panels show the cross-sectional gaps for the NELS and ELS calculated such that the differences in the
observed curves (perfectly horizontal) equal the observed gap changes in the right-hand panels. Data cleaned as
described in section 6 and appendix D.
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Figure A.12. High-/Low-Income Achievement ∆f ’s, NELS/ELS
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Sources: U.S. Department of Education, National Education Longitudinal Study of 1988 (NELS:88),
nces.ed.gov/surveys/nels88/ and Education Longitudinal Study of 2002 (ELS:02), nces.ed.gov/surveys/els2002/

Note: Curves estimated using Epanechnikov smoothing kernels on a grid of 5,000 points. Data cleaned as described in
section 6 and appendix D.
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Figure A.13. High-/Low-Income Achievement Gap/Change Bounds, NELS/ELS
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Sources: U.S. Department of Education, National Education Longitudinal Study of 1988 (NELS:88),
nces.ed.gov/surveys/nels88/ and Education Longitudinal Study of 2002 (ELS:02), nces.ed.gov/surveys/els2002/

Note: Curves estimated using ∆f ’s calculated on a grid of 5,000 evenly spaced points and 50 evenly spaced values of k.
The left-hand panels show the cross-sectional gaps for the NELS and ELS calculated such that the differences in the
observed curves (perfectly horizontal) equal the observed gap changes in the right-hand panels. Data cleaned as
described in section 6 and appendix D.
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Figure A.14. High-/Low-Income Achievement Gap/Change Bounds Using Z-Scores, NELS/ELS
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Sources: U.S. Department of Education, National Education Longitudinal Study of 1988 (NELS:88),
nces.ed.gov/surveys/nels88/ and Education Longitudinal Study of 2002 (ELS:02), nces.ed.gov/surveys/els2002/

Note: Curves estimated using ∆f ’s calculated on a grid of 5,000 evenly spaced points and 500 evenly spaced values of
k. Left-hand panels show the cross-sectional gaps for the NELS and ELS calculated such that the differences in the
observed curves (perfectly horizontal) equal the observed gap changes in the right-hand panels. Data cleaned as
described in section 6 and appendix D.
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Figure A.15. Large- and Small-k W+
0 and W−0 , High-Low Income Math ∆f ,

NELS/ELS (A3)
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Sources: U.S. Department of Education, National Education Longitudinal Study of 1988 (NELS:88),
nces.ed.gov/surveys/nels88/ and Education Longitudinal Study of 2002 (ELS:02), nces.ed.gov/surveys/els2002/

Note: Curves estimated using ∆f ’s calculated on a grid of 5,000 evenly spaced points. Data cleaned as described in
section 6 and appendix D.

Figure A.16. Large- and Small-k W+
0 and W−0 , Symmetric ∆f Satisfying (A3)
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Note: Curves estimated using ∆f ’s calculated on a grid of 5,000 evenly-spaced points.
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Figure A.17. Ordinal vs. Cardinal Power Using I(s) and W−0 (s|k = 0.1)
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Note: Plot shows cross-sectional power for z-tests and BD tests where the raw data is drawn from FA ∼ N(0.25, 1) and
FB ∼ N(0, 1). The solid curve and dashed curve show the relationship between sample size and power for z-tests and
BD tests when raw test scores are used. The circle line and triangle line show the corresponding powers when
W−0 (s|0.2) is used instead. The power of the BD testing approach falls very rapidly as k increases. However, if
W−0 (s|k = 0.2, ε = 0.0001) is used instead, the power of the BD test is essentially unchanged from the raw data case,
while the power of the z-tests using the correctly weighted data are essentially unchanged from the W−0 (s|0.2) case.

Figure A.18. Ordinal vs. Cardinal Power Using W−0 (s|k) When N = 200
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Note: Plot shows cross-sectional power for z-tests and BD tests where the raw data is draw from FA ∼ N(0.2, 1) and
FB ∼ N(0, 1). The red dashed curve shows the estimated power of the BD tests applied to the raw test scores, while
the blue dotted curve shows the power of the z-test using test scores weighted according to W−0 (s|k).
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Appendix B. Tables

Table 1. NLSY79 and NLSY97 Summary Statistics

Variable Survey N Mean Median S.D.
math NLSY79 3,277 96.77 95 18.23
math NLSY97 2,833 98.74 99 18.82
reading NLSY79 3,277 94.19 98 19.32
reading NLSY97 2,833 93.41 98 20.39
AFQT NLSY79 3,277 142.57 146 26.94
AFQT NLSY97 2,833 142.88 147.4 28.11
income NLSY79 3,388 $44,000 $39,800 $28,700
income NLSY97 3,570 $54,700 $43,100 $49,500
age NLSY79 3,388 16.08 16 0.78
age NLSY97 3,570 15.76 16 0.72
black NLSY79 3,388 0.14 0 0.35
black NLSY97 3,570 0.15 0 0.36

Sources: Bureau of Labor Statistics, National Longitudinal Surveys of Youth, NLSY79 and NLSY97,
www.bls.gov/nls/nlsy79.htm, and www.bls.gov/nls/nlsy97.htm

Note: Respondent ages are restricted to 15-17 as of ASVAB test date. All dollars have been converted to a 1997 basis
using the CPI-U. The N shown for a variable is the sample size used in calculations involving that variable. Data
cleaned as described in section 6 and appendix D.

Table 2. NELS/ELS Summary Statistics

Variable Survey Wave N Mean Median S.D. Missing Imputed
math NELS 1990 14,410 44.03 44.31 13.57 777 0
math NELS 1992 12,008 49.00 49.53 14.07 2,138 0
reading NELS 1990 14,427 30.93 31.38 9.91 760 0
reading NELS 1992 11,999 33.33 34.68 10.01 2,147 0
age NELS 1990 15,187 16.13 16 0.68 0 0
age NELS 1992 14,146 18.14 18 .62 0 0
black NELS 1990 15,187 0.12 0 0.32 0 0
black NELS 1992 14,146 0.11 0 0.32 0 0
female NELS 1990 15,187 0.51 1 0.50 0 0
female NELS 1992 14,146 0.50 1 .50 0 0
math ELS 2002 14,934 44.62 44.79 13.57 0 800
math ELS 2004 13,444 50.22 51.38 14.13 1,148 0
reading ELS 2002 14,934 29.29 29.65 9.44 0 933
reading ELS 2004 NA NA NA NA NA NA
age ELS 2002 14,934 15.67 16 0.61 0 0
age ELS 2004 14,592 17.70 18 0.61 0 0
black ELS 2002 14,592 0.14 0 0.35 0 0
black ELS 2004 14,934 0.14 0 0.35 0 0
female ELS 2002 14,934 0.50 0 0.50 0 7
female ELS 2004 14,592 0.50 0 0.50 0 5

Sources: U.S. Department of Education, National Education Longitudinal Study of 1988 (NELS:88),
nces.ed.gov/surveys/nels88/ and Education Longitudinal Study of 2002 (ELS:02), nces.ed.gov/surveys/els2002/

Note: Statistics shown for the NELS first-year follow up (1990) and the ELS base year (2002). Respondent ages
restricted to 15-17 as of survey date. Averages shown for non-missing, non-imputed observations using cross-sectional
weights. NELS 1990 sample includes “freshened” observations. Data cleaned as described in section 6 and appendix D.
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Table 3. NELS/ELS Income Variables

NELS Percentage Percentage ELS Percentage Percentage
Income Full Sample Analysis Sample Income Full Sample Analysis Sample
none .26 .27 none .45 .43
less than $1,000 .49 .48 less than $1,000 1.09 1.14
$1,000-$2,999 1.07 1.13 $1,001-$5,000 1.73 1.78
3,000-$4,999 1.57 1.60 $5,001-$10,000 2.12 2.08
$5,000-$7,499 2.68 2.82 $10,001-$14,000 4.22 4.27
$7,500-$9,999 3.13 3.10 $15,001-$20,000 4.87 4.95
$10,000-$14,999 7.26 7.48 $20,001-$25,000 6.53 6.47
$15,000-$19,999 7.08 7.21 $25,001-$35,000 12.21 12.40
$20,000-$24,999 10.17 10.44 $35,001-$50,000 19.69 19.65
$25,000-$34,999 19.34 19.18 $50,001-$75,000 21.03 20.81
$35,000-$49,999 21.98 21.59 $75,001-$100,000 13.14 13.09
$50,000-$74,999 16.41 16.30 $100,001-$200,000 10.20 10.19
$75,000-$99,999 4.07 4.03 $200,001 or more 2.74 2.75
$100,000-$199,999 3.21 3.16
$200,000 or more 1.26 1.21

Sources: U.S. Department of Education, National Education Longitudinal Study of 1988 (NELS:88),
nces.ed.gov/surveys/nels88/ and Education Longitudinal Study of 2002 (ELS:02), nces.ed.gov/surveys/els2002/

Note: Dollar ranges shown in survey-specific base-year real dollars (1988 for the NELS and 2002 for the ELS). The full
sample columns show the cross-sectionally weighted percentages for the full range of ages in each survey base year. The
analysis sample columns show the percentages of youth in the final sample used to construct the various ∆f ’s. Data
cleaned as described in section 6 and appendix D.
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Table 4. Cross-Sectional k∗’s

NELS/ELS
Subject Year Comparison k∗ Crosses?
math 1990 black/white 0.33 Yes
math 2002 black/white – No
reading 1990 black/white 0.32 Yes
reading 2002 black/white – No
math 1990 income – No
math 2002 income – No
reading 1990 income 0.38 Yes
reading 2002 income – No
NLSY
Subject Year Comparison k∗ Crosses?
math 1979 black/white – No
math 1997 black/white – No
reading 1979 black/white 0.35 Yes
reading 1997 black/white 0.40 Yes
math 1979 income 0.11 Yes
math 1997 income 0.33 Yes
reading 1979 income 0.13 Yes
reading 1997 income 0.20 Yes

Sources: Bureau of Labor Statistics, National Longitudinal Surveys of Youth, NLSY79 and NLSY97,
www.bls.gov/nls/nlsy79.htm, and www.bls.gov/nls/nlsy97.htm; U.S. Department of Education, National Education
Longitudinal Study of 1988 (NELS:88), nces.ed.gov/surveys/nels88/ and Education Longitudinal Study of 2002
(ELS:02), nces.ed.gov/surveys/els2002/

Note: k∗’s estimated using ∆f ’s calculated on an evenly-spaced test-score grid of 5,000 points and k-grid of 1,000
points. Data cleaned as described in section 6 and appendix D.

Table 5. Gap-Change k∗’s

Survey Subject Comparison k∗ Crosses?
NELS/ELS math black/white 0.29 Yes
NELS/ELS reading black/white 0.28 Yes
NELS/ELS math income 0.08 Yes
NELS/ELS reading income 0.04 Yes
NLSY79/97 math black/white 0.11 Yes
NLSY79/97 reading black/white 0.12 Yes
NLSY79/97 math income 0.27 Yes
NLSY79/97 reading income 0.05 Yes

Sources: Bureau of Labor Statistics, National Longitudinal Surveys of Youth, NLSY79 and NLSY97,
www.bls.gov/nls/nlsy79.htm, and www.bls.gov/nls/nlsy97.htm; U.S. Department of Education, National Education
Longitudinal Study of 1988 (NELS:88), nces.ed.gov/surveys/nels88/ and Education Longitudinal Study of 2002
(ELS:02), nces.ed.gov/surveys/els2002/

Note: k∗’s estimated using ∆f ’s calculated on an evenly-spaced test-score grid of 5,000 points and k-grid of 1,000
points. Data cleaned as described in section 6 and appendix D.
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Appendix C. Proofs and Additional Theorems

For notational simplicity, define B+(W,x, y) ≡
´ y
x

(W (s) − s)∆f(s)ds and B−(W,x, y) ≡
´ y
x

(s −

W (s))∆f(s)ds.

C.1. Proofs of the Main Theorems.

Proof. (theorem 4.4 and theorem 4.1) Let W+
k denote the set of weighting functions satisfying (A2)

and D(I,W ) ≤ k that have the form given in equation (4.5). Further, let M+
k denote the set of

weighting functions satisfying (A2) and D ≤ k that differ from any W+
0 ∈ W+

k on at least one interval

with positive measure. Suppose ∃W̃0 ∈ M+
k such that B+(W̃0) > B+(W0) for all W0 ∈ W+

k . There

are two cases to consider: N even and N odd. Suppose first that N is even. Let {s̃2, s̃4, . . . , s̃N} be

the points satisfying W̃0(s∗i ) = s̃i for even values of i. Consider W+
0 (s|k, s̃2, s̃4, . . . , s̃N ) ≡ W̃+

0 . I claim

that B−(W̃+
0 ) > B−(W̃0). To see that this inequality follows, suppose that W̃0 deviates somewhere

on [s∗i−1, s
∗
i+1] for i even. Such a deviation implies that W̃0(s) ≤ W̃+

0 (s) on [s∗i−1, s
∗
i ] and W̃0(s) ≥

W̃+
0 (s) on [s∗i , s

∗
i+1] with at least one of these inequalities strict. Therefore, B+(W̃0, s

∗
i−1, s

∗
i+1) <

B+(W̃+
0 , s

∗
i−1, s

∗
i+1), which implies that W̃+

0 dominates W̃0 on any interval not [0, s∗1] such that W̃0

does not correspond to some W+
0 ∈ W+

k . To finish, consider [0, s∗1]. Note that all W+
0 ∈ W+

k are

identical on [0, s∗1], so if W̃0 deviates on this interval it must be that W̃0(s) 6= max{s− k, 0} on some

[sL, sH ] ⊆ [0, s∗1]. Because all functions satisfying (A2) and D(I,W ) ≤ k are bounded from below

by the maximum of 0 and s − k, W̃0(s) > W+
0 (s) for any W+

0 ∈ W+
k on [s, s̄], which implies that

B+(W̃0, 0, s
∗
1) < B+(W+

0 , 0, s
∗
1) for all W+

0 ∈ W+
k , a contradiction. Now consider the case that N

is odd and construct W̃+
0 as before. The argument that W̃+

0 dominates W̃0 on [0, s∗N−1] is exactly

analogous to the domination argument for N even on [0, 1]. N being odd implies that ∆f > 0 on

(s∗N , 1). Note that all W+
0 ∈ W+

k are identical on [s∗N , 1], so if W̃0 deviates on this interval it must

be that W̃0(s) 6= min{s + k, 1} on some [sL, sH ] ⊆ [s∗N , 1]. Because all functions satisfying (A2) and

D(I,W ) ≤ k are bounded by the minimum of 1 and s + k, W̃0(s) < W+
0 (s) for any W+

0 ∈ W+
k on

[sL, sH ], which implies that B+(W̃0, s
∗
N , 1) < B+(W+

0 , s
∗
N , 1) for all W+

0 ∈ W+
k , a contradiction. �

Proof. (theorem 4.5 and theorem 4.2) Let W−k denote the set of weighting functions satisfying (A2)

and D(I,W ) ≤ k that can be written as in equation (4.6). Further, letM−k denote the set of weighting

functions satisfying (A2) and D ≤ k that differ from any W−0 ∈ W−k on at least one interval with

positive measure. Suppose ∃W̃0 ∈ M+
k such that B−(W̃0) > B−(W−0 ) for all W−0 ∈ W−k . There

are two cases to consider: N even and N odd. Suppose first that N is odd. Let {s̃1, s̃3, . . . , s̃N} be

the points satisfying W̃0(s∗i ) = s̃i for i odd. Consider W−0 (s|k, s̃1, s̃3, . . . , s̃N ) ≡ W̃−0 . I claim that

B−(W̃−0 ) > B−(W̃0). To see this, suppose that W̃0 deviates somewhere on [s∗i−1, s
∗
i+1] for some odd
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i. This implies that W̃0(s) ≥ W̃−0 (s) on [s∗i−1, s
∗
i ] and W̃0(s) ≤ W̃−0 (s) on [s∗i , s

∗
i+1] with at least one

of these inequalities strict. Therefore, B−(W̃0, s
∗
i−1, s

∗
i+1) < B−(W̃−0 , s

∗
i−1, s

∗
i+1), implying that W̃−0

dominates W̃0 on any interval such that W̃0 does not correspond to some W ∈ W−k , a contradiction.

Now consider the case that N is even and construct W̃−0 as before. The argument that W̃−0 dominates

W̃0 on [0, s∗N−1] is exactly analogous to the domination argument for N odd on [0, 1]. N being even

implies that ∆f < 0 on (s∗N , 1). Note that all W−0 ∈ W−k are identical on [s∗N , 1], so if W̃0 deviates on

this interval it must be that W̃0(s) 6= min{s + k, 1} on some [sL, sH ] ⊆ [s∗N , 1]. Because all functions

satisfying (A2) and D(I,W ) ≤ k are bounded by the minimum of 1 and s + k, W̃0(s) < W (s) for

any W−0 ∈ W−k on [sL, sH ], which implies that B−(W̃0, s
∗
N , 1) < B−(W−0 , s

∗
N , 1) for all W−0 ∈ W−k , a

contradiction. �

Proof. (theorem 4.3) Consider ∂B+

∂k . Suppose that k < min{s∗, 1 − s∗} so that W+
0 has the form

given in equation 4.2. In this case, B+ may be written as B+ = −
´ k

0
s∆f(s)ds −

´ s∗
k
k∆f(s)ds +

´ 1−k
s∗

k∆f(s)ds +
´ 1

1−k(1 − s)∆f(s)ds. Differentiating each of these integrals with respect to k yields

∂B+

∂k =
´ 1−k
s∗

∆f(s)ds−
´ s∗
k

∆f(s)ds. Now consider ∂B−

∂k if sc > k and sc+k < 1. In this case, B− may

be written as B− = −
´ sc−k

0
k∆f(s)ds+

´ sc+k

sc−k (s−sc)∆f(s)ds+
´ 1

sc+k
k∆f(s)ds. Taking the derivative

while noting that sc depends on k yields ∂B
−

∂k =
´ 1

sc+k
∆f(s)ds−

´ sc−k
0

∆f(s)ds−
´ sc+k

sc−k
∂sc
∂k ∆f(s)ds. �

C.2. Bounding Analysis Using Slope Restrictions. This section derives worst-case bounds for

the bias associated with using the observed test scale when W0 is required to be strictly increasing.

Very little of importance changes for the bounding analysis if the derivative of the true scale must

be bounded away from 0. The functional forms of W+
0 and W−0 under this new restriction are very

slight modifications of their unconstrained counterparts. Furthermore, as the minimum allowable rate

of change in W0 declines to 0, these worst-case functions converge smoothly to those defined in section

4. This implies that B+ and B− also converge smoothly to the values derived in the main body of the

paper. Thus, for very small ε, the unconstrained biases will be approximately correct and yet the full

ordinal information of the observed test scale will be preserved in the worst-case weighting functions.

Definition C.1. W0 satisfies (A5) for 1 > ε > 0 iff the following hold:

(i) dW0

ds exists everywhere on [0,1] except at a finite number of points. Let S be the points in [0,1]

such that dW0

ds is not defined.

(ii) dW0

ds ≥ ε for all s ∈ [0, 1]/S.

Definition C.2. Let Wε be the set of functions on [0,1] that satisfy by (A2) and (A5). Suppose that

all component test-score distributions in ∆f satisfy (A1). The worst-case W0’s satisfying (A2), (A5),
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and D(I,W ) ≤ k for a given distance restriction k are defined by

W+
0 (s|k,∆f, ε) ≡ max

W∈Wε∧D(I,W )≤k
B+(I,W,∆f)

W−0 (s|k,∆f, ε) ≡ max
W∈Wε∧D(I,W )≤k

B−(I,W,∆f).

Theorem C.3. Suppose that ∆f satisfies (A1) and (A3). Then there exists sc ∈ [s∗ − k, s∗ + k] such

that

W+
0 (s|k,∆f, ε) =


max {s− k, εs} , s ∈ [0, s∗)

min{s+ k, εs+ (1− ε)}, s ∈ [s∗, 1]

W−0 (s|k,∆f, ε) =


min{εs+ (sc − εs∗), s+ k}, s ∈ [0, s∗)

max{εs+ (sc − εs∗), s− k}, s ∈ [s∗, 1]

Proof. The proofs for W+
0 (s|k,∆f, ε) and W−0 (s|k,∆f, ε) are trivial modifications of the proofs of

theorems 4.1 and 4.2, respectively. �

Corollary C.4. Suppose that ∆f satisfies (A1) and (A3). Then, limε↓0W
+
0 (s|k,∆f, ε) = W+

0 (s|k,∆f)

and limε↓0W
−
0 (s|k,∆f, ε) = W−0 (s|k,∆f).

Theorem C.3 and corollary C.4 only deriveW+
0 andW−0 under (A3). The analysis is similar but more

cumbersome for (A4) and is omitted for brevity. Figure C.2 below plots W−0 (s|k, ε) and W+
0 (s|k, ε)

in the case that k is small enough that the distance restriction bites both above and below s∗. These

weighting functions are exactly analogous the their non-slope-constrained counterparts except that

the regions on the unconstrained curves which had slope 0 now have slope ε. This modification also

implies that that the kink points are slightly farther from s∗ compared to the unconstrained case with

the same value of sc.
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Figure C.1. W−0 (s|k, ε) and W+
0 (s|k, ε), ε > 0
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Appendix D. Data

The NELS first surveyed a nationally representative sample of eighth graders in the spring of 1988

with follow-up surveys in 1990, 1992, and 2002. I make use of the 1990 wave in order to keep the

comparison groups consistent with my prior work on the income-achievement gap. The NELS wave

consists mostly of 10th graders who were between the ages of 15 and 17 at the survey date. The ELS
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first surveyed a nationally representative sample of 10th graders in 2002, so all of my calculations

compare this initial ELS wave to the first follow-up wave in the NELS.

Both the NELS and ELS contain data on household income, demographics, and achievement. Re-

spondents in both surveys took comparable achievement tests in each survey wave. These tests covered

similar content and followed a similar stratified design. Both assessments included some items in com-

mon, and both surveys report three parameter logistic item response theory (IRT) scores in the 1988

base-year scale estimated using these items. If the IRT model is correctly specified, these base-year

scale scores should be ordinally comparable between the two surveys. That is, if student i has a higher

score than student j, then student i should have higher underlying achievement regardless of whether

i and j were drawn from the same or different surveys.

The initial waves of the NELS and ELS collected data on household income. Unfortunately, these

data are categorical, significantly complicating the construction of directly comparable income groups

from both surveys. I discuss the various ways of attacking this problem in my other working papers.

For this paper, these details are relatively unimportant, and I simply use one plausible definition out of

many for “high-income” and “low-income.” I define high-income youth as those from the top 20% of the

household income distribution and low-income youth as those from the bottom 20%. I approximate

these quintiles by selecting the range of income buckets such that the mass of the bucket is as close

as possible to 0.2.44 Unlike the NELS, the ELS imputes test scores, family income, and demographic

variables. I drop imputed observations from the ELS sample. My other working paper documents that

the inclusion or exclusion of these observations has relatively little bearing on the sign or magnitude

of the estimated achievement gap changes.

The NLSY79 and NLSY97 are high-quality, nationally representative surveys that contain ordinally

comparable achievement data along with detailed student demographic information. Almost all respon-

dents near the start of each survey took the Armed Services Vocational Aptitude Battery (ASVAB).

Following an extensive literature in economics using these data, I study the math and reading sub-

scores of the Armed Forces Qualifying Test (AFQT), which itself is a subset of the ASVAB.45 The

ASVAB test format changed from pencil-and-paper to a computer aided design between the NLSY79

and NLSY97. The military commissioned a study to determine how to compare scores from the new

and old test formats. Segall[21] constructs a score crosswalk by equating percentiles on the two tests

44For example, suppose there are 8 ordered income categories with equal numbers of respondents in each bucket. Then,
the high-income group would simply be the top two income buckets (containing the top 25% of the sample) and the
low-income groups would likewise be the bottom two buckets. In this case, both categories are somewhat larger than
the target comparison groups.
45The ASVAB components feeding in to the AFQT changed in 1989. Throughout, I will use the current definition that
sets the math subscore to be the sum of the arithmetic reasoning and math knowledge ASVAB component scores. The
definition for reading did not change in 1989.
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for a sample of military recruits who were randomly assigned to one version of the test or the other.46 I

use these crosswalked scores exclusively, as they should be ordinally comparable in the sense previously

defined.

Both NLSY surveys collect extensive longitudinal data on each respondent’s family, income, health,

education, and employment history. I do not use the longitudinal component of these surveys here.

I define high- and low-income respondents as those in the top and bottom quintiles of the base-year

household income distribution, which is reported continuously. This income measure sums together

all sources of income (wage, investment, business, etc.) for all household members. Since the youth

I study are all younger than 18 years old, their total contribution to household income is typically

negligible. Although I have not specifically assessed the robustness of my estimates to these data

choices, I found in Nielsen[16] that ordinal income-achievement estimates using these data are not

sensitive to plausible alternative income definitions.47

46The crosswalk is available courtesy of Altonji, Bhadarwaj, and Lange[1] and is available at the following url: http:
//www.econ.yale.edu/~fl88/data.html. The crosswalk contain percentile-mapped scores for each component score of
the ASVAB. Simply adding these scores together is not strictly valid because it ignores the covariance of the different
ASVAB components. Fortunately, Segall[22] reports that summing the crosswalked scores or crosswalking the summed
scores leads to virtually identical results.
47For example, I estimate similar income-achievement gap changes if I use parental wage income instead of total household
income to define the high- and low-income categories.


